Hopscotch

Hopscotch

时间限制: 5 Sec 内存限制: 128 MB

题目描述

You’re playing hopscotch! You start at the origin and your goal is to hop to the lattice point (N, N). A hop consists of going from lattice point (x1, y1) to (x2, y2), where x1 < x2 and y1 < y2.
You dislike making small hops though. You’ve decided that for every hop you make between two lattice points, the x-coordinate must increase by at least X and the y-coordinate must increase by at least Y .
Compute the number of distinct paths you can take between (0, 0) and (N, N) that respect the above constraints. Two paths are distinct if there is some lattice point that you visit in one path which you don’t visit in the other.
Hint: The output involves arithmetic mod 109+ 7. Note that with p a prime like \(10^9+ 7\), and x an integer not equal to 0 mod p, then \(x(x^p−2)\) mod \(p\) equals 1 mod p.

输入

The input consists of a line of three integers, N X Y . You may assume 1 ≤ X, Y ≤ N ≤ \(10^6\).

输出

The number of distinct paths you can take between the two lattice points can be very large. Hence output this number modulo 1 000 000 007 \((10^9+ 7)\).

样例输入

7 2 3

样例输出

9

题意

从坐标\((0,0)\)走到\((n,n)\),每一步在横向向至少走X长度,在纵向至少走Y长度。问走到终点有多少种走法

分析

考虑走i步到达终点的方法数,即等于分别从横向和纵向走到坐标为n处的方法数乘积。
以横向为例,用\(dp[i]\)表示从\(x=0\)处走到\(x=n\)处恰好走了i步的方法数。这其实相当于这样一个问题:把n个相同的球分给i个不同的人,每个人至少X个球,问有多少种分法。
可以先每个人分\(X-1\)个球,然后还剩余\(n-(X-1) \times i\)个球,对于剩下的球使用隔板法,分球方法数为\(C_{n-(X-1)\times i-1}^{i-1}\);
最终结果就是\[ \sum_{i=1}^{ min(\frac{n}{X},\frac{n}{Y}) } C_{n-(X-1)\times i-1}^{i-1} C_{n-(Y-1)\times i-1}^{i-1}\]

代码

#include <cstdio>
#include <vector>
#include <algorithm>
#include <iostream>
typedef long long ll;
using namespace std;
ll mod = 1000000007;
const int maxn = 1000010;
 
ll qpow(ll a,ll x){
    ll ret=1;
    while (x){
        if (x&1)
            ret = ret*a%mod;
        a=a*a%mod;
        x>>=1;
    }
    return ret;
}
ll fac[maxn],inv[maxn];
 
ll init(){
    fac[0]=1;
    for (int i=1;i<maxn;i++)
        fac[i]=fac[i-1]*i%mod;
    inv[maxn-1]=qpow(fac[maxn-1],mod-2);
    for (int i=maxn-2;i>=0;i--)
        inv[i]=inv[i+1]*(i+1)%mod;
    return 0;
}
 
ll c(ll n,ll m){
    if (n<m) return 0;
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
 
ll dp1[maxn],dp2[maxn];
 
 
int main() {
    init();
    ll n,x,y;
    scanf("%lld%lld%lld",&n,&x,&y);

    for (int i=1;i*x<=n;i++)
    {
        dp1[i]=c(n-(x-1)*i-1,i-1);
    }
 
    for (int i=1;i*y<=n;i++)
    {
        dp2[i]=c(n-(y-1)*i-1,i-1);
    }
 
    ll ans = 0;
    for (int i=1;i*x<=n&&i*y<=n;i++)
        ans =( ans + dp1[i]*dp2[i]%mod)%mod ;
 
    printf("%lld\n",ans);
 
    return 0;
}

转载于:https://www.cnblogs.com/sciorz/p/8904234.html

1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值