Value Iteration Algorithm for MDP

本文介绍了值迭代算法的基本原理,包括如何通过迭代计算获得最优状态价值函数,并从最优状态价值函数中推导出最优策略。文章以网格游戏为例,详细解释了价值传播的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Value-Iteration Algorithm:

For each iteration k+1:

  a. calculate the optimal state-value function for all s∈S;

  b. untill algorithm converges.

end up with an optimal state-value function

 

Optimal State-Value Function

As mentioned on the previous post, the method to pick up Optimal State-Value Function is shown below. From state s, we have multiple possible actions, what we will do is choose the best combination of immediate reward and state-value function from the next state.

Example for a grid game, it is quite like information propagate from the terminal states backward:

 

From State-Value Function to Policy

After we've got the Optimal State-Value Function, the Optimal Policy can be aquired by maxmizing the Action-Value Function. This means we try all possible actions from state s, and then choose the one that has the maximum reward.

转载于:https://www.cnblogs.com/rhyswang/p/11206150.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值