poj3071 Football

本文探讨了如何利用位运算技巧解决比赛中各队获胜概率的问题,通过矩阵表示每队之间的胜率,并运用动态规划算法计算出最有可能赢得比赛的队伍。文中详细解释了输入数据格式、解题思路及关键代码实现,最终通过实例展示了如何应用这些策略来预测比赛结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习位运算在比赛的技巧
Football
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3075 Accepted: 1558

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, andpii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins) = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
= p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

题意:

第一个队跟第二个对比赛,依次类推,赢了的比下一场。如图:

                            *

              *                    *

      *            *         *          *

  0     1     2     3     4      5       6     7

 00   01  10    11  100  101  110  111

可以看出

                   //每队只和其在当轮相邻的队伍进行比赛
                        //第一轮00和01可以比赛,01和10就不可以比赛(因为分组不同,见题意)
                        //第二轮00x和01x进行比赛
//第三轮0xx和1xx比赛,
推出
 if(((j>>(i-1))^1) == (k>>(i-1)))
 //j和k可以进行比赛。                      
  dp[i][j] += dp[i-1][k]*dp[i-1][j]*a[j][k];
//dp[i][j]表示第i轮,第j队打赢的概率。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n;
double a[200][200],dp[200][200];
int pow(int x)
{
    int i,sum=1;
    for(i=1;i<=x;i++)
        sum*=2;
    return sum;
}
int main()
{
    int i,j,m,k;
  while(~scanf("%d",&n))
   {
       memset(dp,0,sizeof(dp));
     if(n==-1)
        break;
        m=pow(n);
      for(i=0;i<m;i++)
        for(j=0;j<m;j++)
         scanf("%lf",&a[i][j]);
         for(i=0;i<m-1;i=i+2)
           {
              dp[1][i]=a[i][i+1];
            dp[1][i+1]=a[i+1][i];
           }
         for(i=2;i<=n;i++)
         {
             for(j=0;j<m;j++)
             {
                 for(k=0;k<m;k++)
                 {
                     if(((j>>(i-1))^1) == (k>>(i-1)))
                         dp[i][j] += dp[i-1][k]*dp[i-1][j]*a[j][k];
                 }
             }
         }
      double mmax=0;
      int team;
      for(i=0;i<m;i++)
       {
          // printf("dp=%lf\n",dp[n][i]);
         if(mmax<dp[n][i])
             {
                 mmax=dp[n][i];
                 team=i;
             }
       }
     printf("%d\n",team+1);
   }
   return 0;
}

 

转载于:https://www.cnblogs.com/cancangood/p/3929852.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值