【LeetCode】048. Rotate Image

本文介绍了一种不使用额外空间旋转二维矩阵的方法,并给出了四种不同的实现思路。这些方法通过原地交换矩阵元素来实现顺时针90度旋转,避免了使用额外的数据结构。

题目:

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

Given input matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

rotate the input matrix in-place such that it becomes:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

Example 2:

Given input matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

rotate the input matrix in-place such that it becomes:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

题解:

  暴力解

Solution 1 

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n / 2; ++i){
            for(int j = i; j < n - 1 - i; ++j){
                int tmp = matrix[i][j];
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = tmp;
            }
        }
    }
};

 

Solution 2 

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n - i; ++j){
                swap(matrix[i][j], matrix[n - 1 - j][n - 1 - i]);
            }
        }
        for(int i = 0; i < n / 2; ++i){
            for(int j = 0; j < n; ++j){
                swap(matrix[i][j], matrix[n - 1 - i][j]);
            }
        }
    }
};

先沿着副对角线(/)翻转,再沿着水平中线翻转。

 

Solution 3 

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n / 2; ++i){
            for(int j = 0; j < n; ++j){
                swap(matrix[i][j], matrix[n - 1 - i][j]);
            }
        }
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < i; ++j){
                swap(matrix[i][j], matrix[j][i]);
            }
        }
    }
};

先沿着水平中线翻转,再沿着主对角线(\)翻转。

Solution 4

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < i; ++j){
                swap(matrix[i][j], matrix[j][i]);
            }
        }
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n / 2; ++j){
                swap(matrix[i][j], matrix[i][n - 1 - j]);
            }
        }
    }
};

先对原数组取其转置(即沿着主对角线翻转),然后把每行的数字翻转(沿着竖直中线翻转)。另,Solution 4 也可写为Solution 4.1

Solution 4.1

class Solution {
public:
    void rotate(vector<vector<int> > &matrix) {
        int n = matrix.size();
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                swap(matrix[i][j], matrix[j][i]);
            }
            reverse(matrix[i].begin(), matrix[i].end());
        }
    }
};

 

转载于:https://www.cnblogs.com/Atanisi/p/7492030.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值