[LeetCode#244] Shortest Word Distance II

本文介绍了一种针对重复查询场景下求解两个单词在列表中最近距离的问题,并提出使用哈希表配合双指针技术优化算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem:

This is a follow up of Shortest Word Distance. The only difference is now you are given the list of words and your method will be called repeatedly many times with different parameters. How would you optimize it?

Design a class which receives a list of words in the constructor, and implements a method that takes two words word1 and word2 and return the shortest distance between these two words in the list.

For example,
Assume that words = ["practice", "makes", "perfect", "coding", "makes"].

Given word1 = “coding”word2 = “practice”, return 3.
Given word1 = "makes"word2 = "coding", return 1.

Note:
You may assume that word1 does not equal to word2, and word1 and word2 are both in the list.

Analysis:

This is an updated version of Shortest Word Distance.
Since it would be called many times, we should not do the search in traditional O(n) way. 
One apparent thing we should optimize is to reduce uncessary check and comparision. We should exclude the words that we are not care about.
The instant idea is to use a hashmap.
Key: the word;
Value: a list of indexes associated with the word. 

Through this way, we can get all information we want by retrieving the HashMap, and only use two realated list.
ArrayList<Integer> list1 = map.get(word1);
ArrayList<Integer> list2 = map.get(word2);

Even though we narrow down the elements we need to search, there could be a efficiency pitfall if we fail to implement it rightly.

Traditionally we would try to search the shortest distance through following way. 
for (int i = 0; i < list1.length(); i++) {
    for (int j = 0; j < list2.length(); j++) {
        min = Math.min(min, Math.abs(j - i));
    }
}
Apparently, at the worst case, the time complexity is O(n^2), which is even worse than our previous solution.
Why? Cause there are many uncessary comparisions.
---------------------------------------------------------------------------------------------------------------
word 1: [1, 5, 8]
word 2: [2, 10]
Since we have already compared min with |2-1|, why we still need to compare |8-1|, since all elements after 2 must have larger distance than |2-1| (with 1 fixed). It seems I get used with "for-loop" method to scan lists, while ignoring we actually could also use "while-loop" over two lists.
-------------------------------------------------------------------
while (i < m && j < n) {
    min = Math.min(min, Math.abs(list1.get(i)-list2.get(j)));
    if (list1.get(i) < list2.get(j))
        i++;
    else
        j++;
    }
}
-------------------------------------------------------------------
The reason we could see the example:
word 1: [1, 5, 8]
word 2: [2, 10]
After we finished the scan: "1, 2",
"1" is no longer could have combination "1, x (x > 2)" has shorter distance than "1, 2".

Solution:

public class WordDistance {
    HashMap<String, ArrayList<Integer>> map = new HashMap<String, ArrayList<Integer>> ();
    public WordDistance(String[] words) {
        for (int i = 0; i < words.length; i++) {
            String word = words[i];
            if (map.containsKey(word)) {
                map.get(word).add(i);
            } else{
                ArrayList<Integer> item = new ArrayList<Integer> ();
                item.add(i);
                map.put(word, item);
            }
        }
    }

    public int shortest(String word1, String word2) {
        ArrayList<Integer> list1 = map.get(word1);
        ArrayList<Integer> list2 = map.get(word2);
        int i = 0, j = 0;
        int min = Integer.MAX_VALUE;
        int m = list1.size();
        int n = list2.size();
        while (i < m && j < n) {
            min = Math.min(min, Math.abs(list1.get(i)-list2.get(j)));
            if (list1.get(i) < list2.get(j))
                i++;
            else
                j++;
        }
        return min;
    }
}

 

转载于:https://www.cnblogs.com/airwindow/p/4805950.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值