1131 Subway Map(30 分)

本文介绍了一种解决北京地铁系统复杂路线问题的算法。通过使用邻接表和深度优先搜索,该算法能够找到从起点到终点的最短路径,同时考虑到最少换乘次数。示例输入和输出展示了算法的有效性和实用性。

In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

subwaymap.jpg

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 100), the number of subway lines. Then N lines follow, with the i-th (i=1,,N) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (≤ 100) is the number of stops, and S[i]'s (i=1,,M) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (i=1,,M1) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (≤ 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

samplemap.jpg

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.
Take Line#X2 from S2 to S3.
......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4
7 1001 3212 1003 1204 1005 1306 7797
9 9988 2333 1204 2006 2005 2004 2003 2302 2001
13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011
4 6666 8432 4011 1306
3
3011 3013
6666 2001
2004 3001

Sample Output:

2
Take Line#3 from 3011 to 3013.
10
Take Line#4 from 6666 to 1306.
Take Line#3 from 1306 to 2302.
Take Line#2 from 2302 to 2001.
6
Take Line#2 from 2004 to 1204.
Take Line#1 from 1204 to 1306.
Take Line#3 from 1306 to 3001.

用邻接表,由于每个车站能连接的车站数不是很多,可以直接开数组。
代码:
#include <stdio.h>
#include <stdlib.h>
#define inf 0x3f3f3f3f
#define MAX 10002
int n,m,k;
int link[MAX][11],linknum[MAX];///邻接元素 邻接元素个数
int vis[MAX],path[MAX],num,ans[MAX],ant;
int line[MAX][11];///与邻接元素 所属的线路
int getline(int a,int b) {///获得线路号
    for(int i = 0;i < linknum[a];i ++)
        if(link[a][i] == b)return line[a][i];
}
void dfs(int stop,int lastline,int lnum,int snum,int des) {///stop 是当前车站 lastline是上一条线路 lnum是当前经过的中转站数 snum是站点数 des是目的地
    path[snum] = stop;
    if(snum > ant || snum == ant && lnum > num)return;
    if(stop == des) {
        ant = snum;
        num = lnum;
        for(int i = 0;i <= snum;i ++) {
            ans[i] = path[i];
        }
        return;
    }
    for(int i = 0;i < linknum[stop];i ++) {
        if(!vis[link[stop][i]]) {
            vis[link[stop][i]] = 1;
            int d = getline(stop,link[stop][i]);
            if(lastline != d)dfs(link[stop][i],d,lnum + 1,snum + 1,des);
            else dfs(link[stop][i],d,lnum,snum + 1,des);
            vis[link[stop][i]] = 0;
        }
    }
}
int main() {
    int a,b;
    scanf("%d",&n);
    for(int i = 1;i <= n;i ++) {
        scanf("%d",&m);
        scanf("%d",&a);
        for(int j = 1;j < m;j ++) {
            scanf("%d",&b);
            link[a][linknum[a] ++] = b;
            line[a][linknum[a] - 1] = i;
            link[b][linknum[b] ++] = a;
            line[b][linknum[b] - 1] = i;
            a = b;
        }
    }
    scanf("%d",&k);
    while(k --) {
        scanf("%d%d",&a,&b);
        ant = num = MAX;
        dfs(a,-1,-1,0,b);
        printf("%d\n",ant);
        int line1 = getline(ans[0],ans[1]);
        for(int i = 2;i <= ant;i ++) {
            int line2 = getline(ans[i - 1],ans[i]);
            if(line1 != line2) {
                printf("Take Line#%d from %04d to %04d.\n",line1,a,ans[i - 1]);
                a = ans[i - 1];
                line1 = line2;
            }
        }
        printf("Take Line#%d from %04d to %04d.\n",line1,a,ans[ant]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/8023spz/p/9319842.html

【电动汽车充电站有序充电调度的散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用散式优化策略应对时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值