ZT extern "C"的用法解析

extern \C\用法解析
该博客主要对extern \C\的用法进行解析,内容转载自https://www.cnblogs.com/jeanschen/p/3517564.html 。

extern "C"的用法解析

1. 引言
   C++ 语言的创建初衷是 “a better C” ,但是这并不意味着 C++ 中类似 C 语言的全局变量和函数所采用的编译和连接方式与 C 语言完全相同。作为一种欲与 C 兼容的语言,
C++ 保留了一部分过程式语言的特点(被世人称为 “ 不彻底地面向对象 ” ),因而它可以定义不属于任何类的全局变量和函数。但是, C++ 毕竟是一种面向对象的程序设计语言
,为了支持函数的重载, C++ 对全局函数的处理方式与 C 有明显的不同。
 
2. 从标准头文件说起
  某企业曾经给出如下的一道面试题:
  面试题
  为什么标准头文件都有类似以下的结构?
    #ifndef __INCvxWorksh
    #define __INCvxWorksh
    #ifdef __cplusplus
    extern "C" {
    #endif
    /*...*/
    #ifdef __cplusplus
    }
    #endif
    #endif /* __INCvxWorksh */
  分析
  显然,头文件中的编译宏 “#ifndef __INCvxWorksh 、 #define __INCvxWorksh 、 #endif”  的作用是防止该头文件被重复引用。
  那么
#ifdef __cplusplus
extern "C" {
  #endif
  #ifdef __cplusplus
}
#endif
  的作用又是什么呢?我们将在下文一一道来。
 
3. 深层揭密 extern "C"
   extern "C"  包含双重含义,从字面上即可得到:首先,被它修饰的目标是 “extern” 的;其次,被它修饰的目标是 “C” 的。让我们来详细解读这两重含义。
  被 extern "C" 限定的函数或变量是 extern 类型的;
   extern 是 C/C++ 语言中表明函数和全局变量作用范围(可见性)的关键字,该关键字告诉编译器,其声明的函数和变量可以在本模块或其它模块中使用。记住,下列语句:
   extern int a;
  仅仅是一个变量的声明,其并不是在定义变量 a ,并未为 a 分配内存空间。变量 a 在所有模块中作为一种全局变量只能被定义一次,否则会出现连接错误。
  通常,在模块的头文件中对本模块提供给其它模块引用的函数和全局变量以关键字 extern 声明 。例如,如果模块 B 欲引用该模块 A 中定义的全局变量和函数时只需包含模块 A 的头文件即可。这样,模块 B 中调用模块 A 中的函数时,在编译阶段,模块 B 虽然找不到该函数,但是并不会报错;它会在连接阶段中从模块 A 编译生成的目标代码中找到此函数。
  与 extern 对应的关键字是 static ,被它修饰的全局变量和函数只能在本模块中使用。因此,一个函数或变量只可能被本模块使用时,其不可能被 extern “C” 修饰。
  被 extern "C" 修饰的变量和函数是按照 C 语言方式编译和连接的;
  未加 extern “C” 声明时的编译方式
  首先看看 C++ 中对类似 C 的函数是怎样编译的。
  作为一种面向对象的语言, C++ 支持函数重载,而过程式语言 C 则不支持。函数被 C++ 编译后在符号库中的名字与 C 语言的不同。例如,假设某个函数的原型为:
void foo( int x, int y );
  该函数被 C 编译器编译后在符号库中的名字为 _foo ,而 C++ 编译器则会产生像 _foo_int_int 之类的名字(不同的编译器可能生成的名字不同,但是都采用了相同的机制,生成的新名字称为 “mangled name” )。
   _foo_int_int 这样的名字包含了函数名、函数参数数量及类型信息, C++ 就是靠这种机制来实现函数重载的。例如,在 C++ 中,函数 void foo( int x, int y ) 与 void foo( int x, float y ) 编译生成的符号是不相同的,后者为 _foo_int_float 。
  同样地, C++ 中的变量除支持局部变量外,还支持类成员变量和全局变量。用户所编写程序的类成员变量可能与全局变量同名,我们以 "." 来区分。而本质上,编译器在进行编译时,与函数的处理相似,也为类中的变量取了一个独一无二的名字,这个名字与用户程序中同名的全局变量名字不同。
  未加 extern "C" 声明时的连接方式
  假设在 C++ 中,模块 A 的头文件如下:
//  模块 A 头文件  moduleA.h
#ifndef MODULE_A_H
#define MODULE_A_H
int foo( int x, int y );
#endif
  在模块 B 中引用该函数:
//  模块 B 实现文件  moduleB.cpp
#include "moduleA.h"
foo(2,3);
  实际上,在连接阶段,连接器会从模块 A 生成的目标文件 moduleA.obj 中寻找 _foo_int_int 这样的符号!
  加 extern "C" 声明后的编译和连接方式
  加 extern "C" 声明后,模块 A 的头文件变为:
//  模块 A 头文件  moduleA.h
#ifndef MODULE_A_H
#define MODULE_A_H
extern "C" int foo( int x, int y );
#endif
  在模块 B 的实现文件中仍然调用 foo( 2,3 ) ,其结果是:
  ( 1 )模块 A 编译生成 foo 的目标代码时,没有对其名字进行特殊处理,采用了 C 语言的方式;
  ( 2 )连接器在为模块 B 的目标代码寻找 foo(2,3) 调用时,寻找的是未经修改的符号名 _foo 。
  如果在模块 A 中函数声明了 foo 为 extern "C" 类型,而模块 B 中包含的是 extern int foo( int x, int y )  ,则模块 B 找不到模块 A 中的函数;反之亦然。
  所以,可以用一句话概括 extern “C” 这个声明的真实目的(任何语言中的任何语法特性的诞生都不是随意而为的,来源于真实世界的需求驱动。我们在思考问题时,不能只停留在这个语言是怎么做的,还要问一问它为什么要这么做,动机是什么,这样我们可以更深入地理解许多问题):
  实现 C++ 与 C 及其它语言的混合编程。
明白了 C++ 中 extern "C" 的设立动机,我们下面来具体分析 extern "C" 通常的使用技巧。
 
   4.extern "C" 的惯用法
  ( 1 )在 C++ 中引用 C 语言中的函数和变量,在包含 C 语言头文件(假设为 cExample.h )时,需进行下列处理:
extern "C"
{
#include "cExample.h"
}
  而在 C 语言的头文件中,对其外部函数只能指定为 extern 类型, C 语言中不支持 extern "C" 声明,在 .c 文件中包含了 extern "C" 时会出现编译语法错误 。
  笔者编写的 C++ 引用 C 函数例子工程中包含的三个文件的源代码如下:
/* c 语言头文件: cExample.h */
#ifndef C_EXAMPLE_H
#define C_EXAMPLE_H
extern int add(int x,int y);     //注:写成extern "C" int add(int , int ); 也可以
#endif
/* c 语言实现文件: cExample.c */
#include "cExample.h"
int add( int x, int y )
{
  return x + y;
}
// c++ 实现文件,调用 add : cppFile.cpp
extern "C"
{
  #include "cExample.h"        //注:此处不妥,如果这样编译通不过,换成 extern "C" int add(int , int ); 可以通过
}
int main(int argc, char* argv[])
{
  add(2,3);
  return 0;
}
  如果 C++ 调用一个 C 语言编写的 .DLL 时,当包括 .DLL 的头文件或声明接口函数时,应加 extern "C" {   } 。
  ( 2 )在 C 中引用 C++ 语言中的函数和变量时, C++ 的头文件需添加 extern "C" ,但是在 C 语言中不能直接引用声明了 extern "C" 的该头文件,应该仅将 C 文件中将 C++ 中定义的 extern "C" 函数声明为 extern 类型。
  笔者编写的 C 引用 C++ 函数例子工程中包含的三个文件的源代码如下:
//C++ 头文件  cppExample.h
#ifndef CPP_EXAMPLE_H
#define CPP_EXAMPLE_H
extern "C" int add( int x, int y );
#endif
//C++ 实现文件  cppExample.cpp
#include "cppExample.h"
int add( int x, int y )
{
  return x + y;
}
/* C 实现文件  cFile.c
/*  这样会编译出错: #include "cExample.h" */
extern int add( int x, int y );
int main( int argc, char* argv[] )
{
  add( 2, 3 );
  return 0;
}
  如果深入理解了第 3 节中所阐述的 extern "C" 在编译和连接阶段发挥的作用,就能真正理解本节所阐述的从 C++ 引用 C 函数和 C 引用 C++ 函数的惯用法。对第 4 节给出的示例代码,需要特别留意各个细节。

转载于:https://www.cnblogs.com/jeanschen/p/3517564.html

#include "modelDeemo.h" #include "version.txt" // excerpt-export-start int __stdcall DllMain(void *,unsigned, void *) { return 1; } extern "C" EXPORT_TAG const char *getName() { #ifdef MODELDEBUG return "cmodelDeemod"; #else return "cmodelDeemo"; #endif } extern "C" EXPORT_TAG unsigned getMajorVersion() { return MAJOR_VERSION; } extern "C" EXPORT_TAG unsigned getMinorVersion() { return UPDATE_VERSION; } extern "C" EXPORT_TAG void *createInstance() { models::ModelDeemo *m = new models::ModelDeemo(); return (void *)m; } // excerpt-export-end namespace models { // excerpt-con-start ModelDeemo::ModelDeemo() : bulk_(0.0), Mshear_(0.0), Mviscosity1_(0.0), Kshear1_(0.0), Kviscosity1_(0.0), Kshear2_(0.0), Kviscosity2_(0.0), Mviscosity2_(0.0), A_(0.0) { //kelvinStrain1 Mekd_[0] = 0.0; Mekd_[1] = 0.0; Mekd_[2] = 0.0; Mekd_[3] = 0.0; Mekd_[4] = 0.0; Mekd_[5] = 0.0; //kelvinStrain2 Mekd_[6] = 0.0; Mekd_[7] = 0.0; Mekd_[8] = 0.0; Mekd_[9] = 0.0; Mekd_[10] = 0.0; Mekd_[11] = 0.0; } // excerpt-con-end String ModelDeemo::getName() const { #ifdef MODELDEBUG return L"Deemo-debug"; #else return L"Deemo"; #endif } String ModelDeemo::getFullName() const { #ifdef MODELDEBUG return L"Deemo Debug"; #else return L"Deemo"; #endif } UInt ModelDeemo::getMinorVersion() const { return UPDATE_VERSION; } String ModelDeemo::getProperties() const { //获取参数 return L"bulk_, Kshear1_, Mshear_, Kviscosity1_, Mviscosity1_,"//burgers的参数 L"Kshear2_, Kviscosity2_, Mviscosity2_, A_," //塑性部分的参数 L"strain-kelvin-xx,strain-kelvin-yy,strain-kelvin-zz,strain-kelvin-xy,strain-kelvin-xz,strain-kelvin-yz,"//黏弹性体应变 L"cohesion,friction,dilation,tension,strain-shear-plastic,strain-tensile-plastic -strain-tension-plastic";//MC准则 } String ModelDeemo::getStates() const { return L"shear-n,tension-n,shear-p,tension-p"; } Variant ModelDeemo::getProperty(UInt index) const { switch (index) { case 1: return bulk_; case 2: return Kshear1_; case 3: return Mshear_; case 4: return Kviscosity1_; case 5: return Mviscosity1_; case 6: return Kshear2_; case 7: return Kviscosity2_; case 8: return Mviscosity2_; case 9: return A_;//模型参数 case 10: return Mekd_[0]; case 11: return Mekd_[1]; case 12: return Mekd_[2]; case 13: return Mekd_[3]; case 14: return Mekd_[4]; case 15: return Mekd_[5]; case 16: return Mekd_[6]; case 17: return Mekd_[7]; case 18: return Mekd_[8]; case 19: return Mekd_[9]; case 20: return Mekd_[10]; case 21: return Mekd_[11]; case 22: return cohesion_; case 23: return friction_; case 24: return dilation_; case 25: return tension_; case 26: return sHP_;//剪切应变 case 27: return tHP_;//张拉应变 } return(0.0); } void ModelDeemo::setProperty(UInt index,const Variant &p,UInt restoreVersion) { ConstitutiveModel::setProperty(index, p, restoreVersion); switch (index) { case 1: bulk_ = p.toDouble(); break; case 2: Kshear1_ = p.toDouble(); break; case 3: Mshear_ = p.toDouble(); break; case 4: Kviscosity1_ = p.toDouble(); break; case 5: Mviscosity1_ = p.toDouble(); break; case 6: Kshear2_ = p.toDouble(); break; case 7: Kviscosity2_ = p.toDouble(); break; case 8: Mviscosity2_ = p.toDouble(); break; case 9: A_ = p.toDouble(); break; case 10: Mekd_[0] = p.toDouble(); break; case 11: Mekd_[1] = p.toDouble(); break; case 12: Mekd_[2] = p.toDouble(); break; case 13: Mekd_[3] = p.toDouble(); break; case 14: Mekd_[4] = p.toDouble(); break; case 15: Mekd_[5] = p.toDouble(); break; case 16: Mekd_[6] = p.toDouble(); break; case 17: Mekd_[7] = p.toDouble(); break; case 18: Mekd_[8] = p.toDouble(); break; case 19: Mekd_[9] = p.toDouble(); break; case 20: Mekd_[10] = p.toDouble(); break; case 21: Mekd_[11] = p.toDouble(); break; case 22: cohesion_ = p.toDouble(); break; case 23: friction_ = p.toDouble(); break; case 24: dilation_ = p.toDouble(); break; case 25: tension_ = p.toDouble(); break; case 26: sHP_ = p.toDouble(); break; case 27: tHP_ = p.toDouble(); break; } } /*bool ModelDeemo::isPropertyAdvanced(UInt i) const { if (i <= 4) return ModelDeemo::isPropertyAdvanced(i); else if (i==9) return true; return false; }*/ //下面这段cvisc中是vm,这里是mm void ModelDeemo::copy(const ConstitutiveModel *m) { const ModelDeemo *mm = dynamic_cast<const ModelDeemo *>(m); if (!mm) throw std::runtime_error("Internal error: constitutive model dynamic cast failed."); // ConstitutiveModel::copy(m); // bulk_ = mm->bulk_; Kshear1_ = mm->Kshear1_; Mshear_ = mm->Mshear_; Kviscosity1_ = mm->Kviscosity1_; Mviscosity1_ = mm->Mviscosity1_; Kshear2_ = mm->Kshear2_; Kviscosity2_ = mm->Kviscosity2_; Mviscosity2_ = mm->Mviscosity2_; A_ = mm->A_; Mekd_[0] = mm->Mekd_[0]; Mekd_[1] = mm->Mekd_[1]; Mekd_[2] = mm->Mekd_[2]; Mekd_[3] = mm->Mekd_[3]; Mekd_[4] = mm->Mekd_[4]; Mekd_[5] = mm->Mekd_[5]; Mekd_[6] = mm->Mekd_[6]; Mekd_[7] = mm->Mekd_[7]; Mekd_[8] = mm->Mekd_[8]; Mekd_[9] = mm->Mekd_[9]; Mekd_[10] = mm->Mekd_[10]; Mekd_[11] = mm->Mekd_[11]; cohesion_ = mm->cohesion_; friction_ = mm->friction_; dilation_ = mm->dilation_; tension_ = mm->tension_; sHP_ = mm->sHP_; tHP_ = mm->tHP_; } // excerpt-run-start参数初始化,计算模型中间参数值; void ModelDeemo::initialize(UByte d,State *s) { ConstitutiveModel::initialize(d,s); //参数非零化 if (Mshear_ <= 0.0) Mshear_ = 1e-20; if (Kshear1_ <= 0.0) Kshear1_ = 0.0; if (Kshear2_ <= 0.0) Kshear2_ = 0.0; if (Kviscosity1_ <= 0.0) { Kviscosity1_ = 0.0; Kshear1_ = 0.0; } if (Kviscosity2_ <= 0.0) { Kviscosity2_ = 0.0; Kshear2_ = 0.0; } if (Mviscosity1_ <= 0.0) Mviscosity1_ = 0.0; if (Mviscosity2_ <= 0.0) Mviscosity2_ = 0.0; if (A_ <= 0.0) A_ = 0.0; // 3. 初始化Mohr-Coulomb准则相关参数(参考CVisc模型) Double rsin = std::sin(friction_ * degrad); // degrad是角度转弧度的系数 nph_ = (1.0 + rsin) / (1.0 - rsin); // 塑性硬化参数 csn_ = 2.0 * cohesion_ * sqrt(nph_); // 修正后的内聚力 // 限制抗拉强度不超过内聚力和摩擦角决定的顶点值 if (friction_ > 0.0) { Double apex = cohesion_ / std::tan(friction_ * degrad); tension_ = std::min(tension_, apex); } // 剪胀角相关参数 rsin = std::sin(dilation_ * degrad); nps_ = (1.0 + rsin) / (1.0 - rsin); // 剪胀参数 // 计算应力比参数 rc_ = std::sqrt(1.0 + nph_ * nph_); } static const UInt Dqs = 12; static const UInt Dqt = 13; void ModelDeemo::run(UByte d,State *s) { ConstitutiveModel::run(d,s); // excerpt-state-start if (s->state_ & shear_now) s->state_ |= shear_past; s->state_ &= ~shear_now; if (s->state_ & tension_now) s->state_ |= tension_past; s->state_ &= ~tension_now; // excerpt-state-end UInt iPlas = 0;//未屈服(黏弹性) // dEkd values now stored in s->working_[] array (necessary for thread safety) Double tempk1 = 0, tempk2 = 0, tempm1 = 0, tempm2 = 0.0; Double dCrtdel = (s->isCreep() ? s->getTimeStep() : 0.0); Double dSubZoneVolume = s->getSubZoneVolume(); if (!s->sub_zone_) { s->working_[0] = 0.0; s->working_[1] = 0.0; s->working_[2] = 0.0; s->working_[3] = 0.0; s->working_[4] = 0.0; s->working_[5] = 0.0; s->working_[6] = 0.0; s->working_[7] = 0.0; s->working_[8] = 0.0; s->working_[9] = 0.0; s->working_[10] = 0.0; s->working_[11] = 0.0; s->working_[Dqs] = 0.0; s->working_[Dqt] = 0.0; } if (Kviscosity1_ <= 0.0) tempk1 = 0.0; else tempk1 = 1.0 / Kviscosity1_; // if (Mviscosity1_ <= 0.0) tempm1 = 0.0; else tempm1 = 1.0 / Mviscosity1_; if (Kviscosity2_ <= 0.0) tempk2 = 0.0; else tempk2 = 1.0 / Kviscosity2_; if (Mviscosity2_ <= 0.0) tempm2 = 0.0; else tempm2 = 1.0 / Mviscosity2_; Double temp1 = 0.5 * Kshear1_ * dCrtdel * tempk1; Double a1_con = 1.0 + temp1;//A1 Double b1_con = 1.0 - temp1;//B1 Double ba1 = b1_con / a1_con; Double bac1 = ba1 - 1.0;//(B1/A1-1) Double temp2 = 0.5 * Kshear2_ * dCrtdel * tempk2; Double a2_con = 1.0 + temp2;//A2 Double b2_con = 1.0 - temp2;//B2 Double ba2 = b2_con / a2_con; Double bac2 = ba2 - 1.0;//(B2/A2-1) Double tempb = (tempm1 + tempk1 / a1_con+ tempk2 / a2_con) * dCrtdel * 0.25; Double tempa = 0.5 / Mshear_; Double x_con = tempa + tempb;//a Double y_con = tempa - tempb;//b Double z1_con = dCrtdel * tempk1 / (4.0 * a1_con); Double z2_con = dCrtdel * tempk2 / (4.0 * a2_con); //Double z_con = z1_con + z2_con;// Double c1dxc = 1.0 / x_con;//1/a //;--- partition strains --- Double dev = s->stnE_.s11() + s->stnE_.s22() + s->stnE_.s33(); Double dev3 = d1d3 * dev; Double de11d = s->stnE_.s11() - dev3; Double de22d = s->stnE_.s22() - dev3; Double de33d = s->stnE_.s33() - dev3;//应变计算 //;--- partition stresses--- Double s0 = d1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); Double s11d = s->stnS_.s11() - s0; Double s22d = s->stnS_.s22() - s0; Double s33d = s->stnS_.s33() - s0;//应力计算 //;--- remember old stresses --- Double s11old = s11d; Double s22old = s22d; Double s33old = s33d; Double s12old = s->stnS_.s12(); Double s13old = s->stnS_.s13(); Double s23old = s->stnS_.s23(); //;--- new trial deviator stresses assuming viscoelastic increments --- s11d = (de11d + s11d * y_con - Mekd_[0] * bac1) * c1dxc; s22d = (de22d + s22d * y_con - Mekd_[1] * bac1) * c1dxc; s33d = (de33d + s33d * y_con - Mekd_[2] * bac1) * c1dxc; Double s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con - Mekd_[3] * bac1) * c1dxc; Double s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con - Mekd_[4] * bac1) * c1dxc; Double s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con - Mekd_[5] * bac1) * c1dxc; //;--- new trial isotropic stress assuming elastic increment --- s0 += bulk_ * dev; Double s11i = s11d + s0; Double s22i = s22d + s0; Double s33i = s33d + s0; //; --- trial stresses --- s->stnS_.rs11() = s11i; s->stnS_.rs22() = s22i; s->stnS_.rs33() = s33i; s->stnS_.rs12() = s12i; s->stnS_.rs13() = s13i; s->stnS_.rs23() = s23i; //先标定了没有进入塑性的部分 //下面是在做塑性状态的判断 if (canFail()) { SymTensorInfo info; DVect3 prin = s->stnS_.getEigenInfo(&info); Double e1_ = bulk_ + d2d3 * c1dxc;//α1 Double e2_ = bulk_ - d1d3 * c1dxc;//α2 Double ra = e1_ - nps_ * e2_; //Double e21_ = e2_ / e1_; Double rb = e2_ * (1.0 - nps_); Double rd = e2_ - nps_ * e1_;//应力更新公式的λ的系数 //定义塑性部分相关参数 Double G3 = Kshear2_; // 开尔文体弹性模量 (对应Kshear2_) Double A = A_; // 非线性黏壶参数 Double fs = -prin.x() + nph_ * prin.z() - csn_; Double ftz = prin.z() - tension_; Double fty = prin.y() - tension_; Double ftx = prin.x() - tension_;//MC破坏准则 Double fsd = fs / rc_;//(归一化但是还没搞清楚是啥) if (fsd > 0.0 && fsd >= ftz) {//剪切塑性修正 iPlas = 1; Double lambda_s_1 = fs / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel)); //λs1 Double lambda_s_2 = fs * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); //λs2 Double lambda_s = lambda_s_1 + lambda_s_2;//λs s->state_ |= shear_now; prin.rx() += lambda_s * ra; prin.ry() += lambda_s * rb; prin.rz() += lambda_s * rd;//已检查 } else if (ftz > 0.0 && ftz >= fsd) { s->state_ |= tension_now;//拉伸塑性修正 if (ftx > 0.0) { iPlas = 4; Double beta_s_xt = ftx / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βx Double gamma_s_xt = ftx * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γx Double lambda_s_xt = beta_s_xt + gamma_s_xt;//λsxt Double beta_s_yt = fty / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βy Double gamma_s_yt = fty * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γy Double lambda_s_yt = beta_s_yt + gamma_s_yt;//λsyt Double beta_s_zt = ftz / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βz Double gamma_s_zt = ftz * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γz Double lambda_s_zt = beta_s_zt + gamma_s_zt;//λszt prin.rx() -= lambda_s_xt * e1_ + (lambda_s_yt + lambda_s_zt) * e2_; prin.ry() -= lambda_s_yt * e1_ + (lambda_s_xt + lambda_s_zt) * e2_; prin.rz() -= lambda_s_zt * e1_ + (lambda_s_xt + lambda_s_yt) * e2_;//三个主应力失效 } else if (fty > 0.0) { iPlas = 3; Double beta_s_xt = ftx / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βx Double gamma_s_xt = ftx * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γx Double lambda_s_xt = beta_s_xt + gamma_s_xt;//λsxt Double beta_s_yt = fty / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βy Double gamma_s_yt = fty * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γy Double lambda_s_yt = beta_s_yt + gamma_s_yt;//λsyt Double beta_s_zt = ftz / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βz Double gamma_s_zt = ftz * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γz Double lambda_s_zt = beta_s_zt + gamma_s_zt;//λszt prin.rx() -= (lambda_s_yt + lambda_s_zt) * e2_; prin.ry() -= (lambda_s_zt * e2_ + lambda_s_yt * e1_); prin.rz() -= (lambda_s_zt * e1_ + lambda_s_yt * e2_);//两个主应力失效 } else { iPlas = 2; Double beta_s_xt = ftx / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βx Double gamma_s_xt = ftx * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γx Double lambda_s_xt = beta_s_xt + gamma_s_xt;//λsxt Double beta_s_yt = fty / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βy Double gamma_s_yt = fty * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γy Double lambda_s_yt = beta_s_yt + gamma_s_yt;//λsyt Double beta_s_zt = ftz / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βz Double gamma_s_zt = ftz * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γz Double lambda_s_zt = beta_s_zt + gamma_s_zt;//λszt //Double tco = ftz * e21_;//应该是用不上了 prin.rx() -= lambda_s_zt * e2_ ; prin.ry() -= lambda_s_zt * e2_ ; prin.rz() -= lambda_s_zt * e1_ ;//一个主应力失效 } } if (iPlas == 0) { // 塑性未激活:仅用第一个 Kelvin 元件(原逻辑) s11d = (de11d + s11d * y_con - Mekd_[0] * bac1) * c1dxc; s22d = (de22d + s22d * y_con - Mekd_[1] * bac1) * c1dxc; s33d = (de33d + s33d * y_con - Mekd_[2] * bac1) * c1dxc; s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con - Mekd_[3] * bac1) * c1dxc; s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con - Mekd_[4] * bac1) * c1dxc; s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con - Mekd_[5] * bac1) * c1dxc; } else { //Double s11_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s11d)) / (2 * m1_); //Double s22_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s22d)) / (2 * m1_); //Double s33_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s33d)) / (2 * m1_); //Double s12_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s12())) / (2 *m1_); //Double s13_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s13())) / (2 *m1_); //Double s23_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s23())) / (2 *m1_); //非线性牛顿体 Double s11_2 = s11d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s22_2 = s22d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s33_2 = s33d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s12_2 = s->stnS_.s12() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s13_2 = s->stnS_.s13() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s23_2 = s->stnS_.s23() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); // 塑性已激活:使用两个 Kelvin 元件和一个非线性牛顿体 s11d = (de11d + s11d * y_con - s11_2 - Mekd_[0] * bac1 - Mekd_[6] * bac2) * c1dxc; s22d = (de22d + s22d * y_con - s22_2 - Mekd_[1] * bac1 - Mekd_[7] * bac2) * c1dxc; s33d = (de33d + s33d * y_con - s33_2 - Mekd_[2] * bac1 - Mekd_[8] * bac2) * c1dxc; s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con - s12_2 - Mekd_[3] * bac1 - Mekd_[9] * bac2) * c1dxc; s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con - s13_2 - Mekd_[4] * bac1 - Mekd_[10] * bac2) * c1dxc; s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con - s23_2 - Mekd_[5] * bac1 - Mekd_[11] * bac2) * c1dxc; } if (friction_ > 0.0) { Double apex = cohesion_ / tan(friction_*degrad); if (prin.x() >= apex || prin.y() >= apex || prin.z() >= apex) {//如果任意方向上的应力超过这个阈值,进入拉伸状态 iPlas = 4; s->state_ |= tension_now; prin.rx() = apex; prin.ry() = apex; prin.rz() = apex; } } Double lambda_s_1 = fs / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel)); //λs1 Double lambda_s_2 = fs * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); //λs2 Double lambda_s = lambda_s_1 + lambda_s_2;//λs Double beta_s_xt = ftx / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βx Double gamma_s_xt = ftx * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γx Double lambda_s_xt = beta_s_xt + gamma_s_xt;//λsxt Double beta_s_yt = fty / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βy Double gamma_s_yt = fty * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γy Double lambda_s_yt = beta_s_yt + gamma_s_yt;//λsyt Double beta_s_zt = ftz / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βz Double gamma_s_zt = ftz * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γz Double lambda_s_zt = beta_s_zt + gamma_s_zt;//λszt if (iPlas) { s->stnS_ = info.resolve(prin);//用当前的prin应力来解析并更新应力状态 if (iPlas == 1) { Double dDe1p = -lambda_s;//1方向的塑性应变增量 Double dDe3p = -1 * lambda_s * nps_;//3方向的塑性应变增量 Double dDepa = d1d3 * (dDe1p + dDe3p); dDe1p -= dDepa; dDe3p -= dDepa; s->working_[Dqs] += sqrt(0.5 * (dDe1p*dDe1p + dDepa * dDepa + dDe3p * dDe3p)) * dSubZoneVolume; } if (iPlas == 2) { Double dAux = lambda_s_zt; s->working_[Dqt] += dAux * dSubZoneVolume; } if (iPlas == 3) { Double dAux = lambda_s_zt + lambda_s_yt; s->working_[Dqt] += dAux * dSubZoneVolume; } if (iPlas == 4) { Double dAux = lambda_s_zt + lambda_s_yt + lambda_s_xt; s->working_[Dqt] += dAux * dSubZoneVolume; } } } //--- sub-zone contribution to Kelvin1-strains --- s0 = d1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); s->working_[0] += (Mekd_[0] * ba1 + (s->stnS_.s11() - s0 + s11old) * z1_con) * s->getSubZoneVolume(); s->working_[1] += (Mekd_[1] * ba1 + (s->stnS_.s22() - s0 + s22old) * z1_con) * s->getSubZoneVolume(); s->working_[2] += (Mekd_[2] * ba1 + (s->stnS_.s33() - s0 + s33old) * z1_con) * s->getSubZoneVolume(); s->working_[3] += (Mekd_[3] * ba1 + (s->stnS_.s12() + s12old) * z1_con) * s->getSubZoneVolume(); s->working_[4] += (Mekd_[4] * ba1 + (s->stnS_.s13() + s13old) * z1_con) * s->getSubZoneVolume(); s->working_[5] += (Mekd_[5] * ba1 + (s->stnS_.s23() + s23old) * z1_con) * s->getSubZoneVolume(); //--- sub-zone contribution to Kelvin2-strains --- s->working_[6] += (Mekd_[6] * ba2 + (s->stnS_.s11() - s0 + s11old) * z2_con) * s->getSubZoneVolume(); s->working_[7] += (Mekd_[7] * ba2 + (s->stnS_.s22() - s0 + s22old) * z2_con) * s->getSubZoneVolume(); s->working_[8] += (Mekd_[8] * ba2 + (s->stnS_.s33() - s0 + s33old) * z2_con) * s->getSubZoneVolume(); s->working_[9] += (Mekd_[9] * ba2 + (s->stnS_.s12() + s12old) * z2_con) * s->getSubZoneVolume(); s->working_[10] += (Mekd_[10] * ba2 + (s->stnS_.s13() + s13old) * z2_con) * s->getSubZoneVolume(); s->working_[11] += (Mekd_[11] * ba2 + (s->stnS_.s23() + s23old) * z2_con) * s->getSubZoneVolume(); //--- update stored Kelvin-strains and plastic strain --- if (s->sub_zone_ == s->total_sub_zones_ - 1) {//这行代码检查是否在最后一个子区域内,如果是,则执行后续的更新操作 Double Aux = 1. / s->getZoneVolume();//Aux变量是区域体积的倒数 if (s->overlay_ == 2) Aux *= 0.5;//如果overlay_等于2,则Aux乘以0.5. Mekd_[0] = s->working_[0] * Aux; Mekd_[1] = s->working_[1] * Aux; Mekd_[2] = s->working_[2] * Aux; Mekd_[3] = s->working_[3] * Aux; Mekd_[4] = s->working_[4] * Aux; Mekd_[5] = s->working_[5] * Aux; Mekd_[6] = s->working_[6] * Aux; Mekd_[7] = s->working_[7] * Aux; Mekd_[8] = s->working_[8] * Aux; Mekd_[9] = s->working_[9] * Aux; Mekd_[10] = s->working_[10] * Aux; Mekd_[11] = s->working_[11] * Aux; if (canFail()) { sHP_ += s->working_[Dqs] * Aux; tHP_ += s->working_[Dqt] * Aux; } } // excerpt-run-end } } // namespace models // EOF改成这样对吗
最新发布
10-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值