无限二等分[0,1]这个区间之后还剩下啥?what's left after dividing an unit interval [0,1] infinitely many times?...

通过不断将区间等分为两部分并保留左侧子区间的方法,无限次重复此过程后,最终剩下的会是什么?利用闭区间套定理可以得出结论:无限次分割后仅剩下一点,即实数0。

Dividing an unit interval \([0,1]\) into two equal subintervals by the midpoint \(\dfrac {0+1} {2}=\dfrac {1} {2}\), denote the left subinterval by \(I_{1}=\left[ 0,\dfrac {1} {2^{1}}\right]\), next, divide \(I_{1}\) into two equal parts by its midpoint, denote the left subinterval by \(I_{2}=\left[ 0,\dfrac {1} {2^{2}}\right]\). Keep repeating this procedure indefinitely, what's left in the end ? Since referred infinitely many times here, it seems impossible to image the end case, but we could actually 'see' it!
Continue the process, obtaining a sequence of nested intervals\[I_{n}=\left[ 0,\dfrac {1} {2^{n}}\right], n = 1, 2, 3, ... \]Applying the nested intervals theorem there is only one point, one real number 0 contained in every \(I_{n}\), i.e. \[\displaystyle\bigcap_{{n=1}}^{\infty}\left[ 0,\dfrac {1} {2^{n}}\right]=\left[ 0,0\right]=\{0\}\]
In conclusion, the only thing left after infinitely many times of these dividing is a point. More general, we don't need to divide each interval equally to form that sequence of nested intervals, since the nested intervals theorem doesn't requires that.

转载于:https://www.cnblogs.com/iMath/p/6397330.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值