Leetcode: Non-overlapping Intervals

本文介绍了一个经典的区间调度问题,即如何找到最小数量的区间移除数以使剩余区间不重叠的方法。通过将区间终点升序排列并遍历求解最大非重叠区间数,最终确定最小移除数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note:
You may assume the interval's end point is always bigger than its start point.
Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]

Output: 1

Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ]

Output: 2

Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ]

Output: 0

Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

Actually, the problem is the same as "Given a collection of intervals, find the maximum number of intervals that are non-overlapping." (the classic Greedy problem: Interval Scheduling). With the solution to that problem, guess how do we get the minimum number of intervals to remove? : )

Sorting Interval.end in ascending order is O(nlogn), then traverse intervals array to get the maximum number of non-overlapping intervals is O(n). Total is O(nlogn).

开始的时候想岔了,以为是要求同一时刻overlap的最多interval数,但仔细想一想就发现不对,应该是non-overlap的interval的最大数目

 1 /**
 2  * Definition for an interval.
 3  * public class Interval {
 4  *     int start;
 5  *     int end;
 6  *     Interval() { start = 0; end = 0; }
 7  *     Interval(int s, int e) { start = s; end = e; }
 8  * }
 9  */
10 public class Solution {
11     public int eraseOverlapIntervals(Interval[] intervals) {
12         if (intervals.length == 0) return 0;
13         int nonOverlap = 1;
14         int seq = 0;
15         Arrays.sort(intervals, new Comparator<Interval>() {
16             public int compare(Interval i1, Interval i2) {
17                 return i1.end - i2.end;
18             }
19         });
20         for (int i=1; i<intervals.length; i++) {
21             if (intervals[i].start >= intervals[seq].end) {
22                 seq = i;
23                 nonOverlap++;
24             }
25         }
26         return intervals.length - nonOverlap;
27     }
28 }

 

转载于:https://www.cnblogs.com/EdwardLiu/p/6139762.html

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值