【LOJ】#6289. 花朵

本文介绍了一种使用快速傅立叶变换(FFT)优化树形动态规划(DP)的方法,解决了一个经典问题。通过树链剖分技术,将复杂度降低到了O(Nlog³N),并提供了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解

我当时连\(n^2\)的树背包都搞不明白,这道题稳稳的爆零啊= =

然后听说这道题需要FFT……我当时FFT的板子都敲不对,然后这道题就扔了

然后,我去考了thusc……好吧,令人不愉快的经历,听说我要是把这道题做了我大概就能A了D2T2……生无可恋.jpg

还有一个月,加油吧,NOI2018可能是我最后能去thu的机会了TAT

设dp[u][0 / 1][i]为以u为根的子树,没选u还是选了u,一共选了i个点
转移就是从所有子树里选出大小为i的独立集更新,转移可以类似树背包
这道题dp方程写出来卷积优化就是显然的,关键是怎么优化

我们把这个树给树链剖分了,设g[u][0 / 1][i]为u这个点除了u的重儿子以外的子树,没选u还是选了u,独立集大小为i的值(把i当成指数,把这个数组当成一个多项式)这是我们用来卷积的多项式

我们从深度最深的链开始,由于我们希望一下子算出一条链,汇总到链顶,而不关心链上每个点的dp值,用分治FFT把一条链的答案算出来,具体就是存四个多项式,记录这条链的头尾选或没选,然后合并起来

合并到父亲的时候我们对于每个点的所有轻儿子也分治乘起来,如果一个个乘起来会达到\(n ^ 2\)

分治一个链的复杂度是\(O(size(p) \log^{2} size(p))\)p是重链顶端,然后因为轻重链剖分,所以\(\sum size(p) = O(N \log N)\)复杂度为\(O(N \log^3 N)\)

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 80005
#define RG register
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {putchar('-');x = -x;}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
const int MOD = 998244353,L = (1 << 18);
int W[L + 5],N,M,B[MAXN];
int siz[MAXN],dep[MAXN],fa[MAXN],son[MAXN];
int top[MAXN],Line[MAXN],tot,cnt,lsiz[MAXN],dfn[MAXN];
vector<int> f[MAXN][2],zero,g[2][MAXN];
struct node {
    int to,next;
}E[MAXN * 2];
struct res_node {
    vector<int> f00,f01,f10,f11;
};
int head[MAXN],sumE;
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
int mul(int a,int b) {
    return 1LL * a * b % MOD;
}
int inc(int a,int b) {
    a = a + b;
    if(a >= MOD) a -= MOD;
    return a;
}
int fpow(int x,int c) {
    int res = 1,t = x;
    while(c) {
    if(c & 1) res = mul(res,t);
    t = mul(t,t);
    c >>= 1;
    }
    return res;
}
void NTT(vector<int> &a,int len,int on) {
    a.resize(len);
    for(int i = 1 , j = len / 2 ; i < len - 1 ; ++i) {
    if(i < j) swap(a[i],a[j]);
    int k = len / 2;
    while(j >= k) {
        j -= k;
        k >>= 1;
    }
    j += k;
    }
    for(int h = 2 ; h <= len ; h <<= 1) {
    int wn = W[(L + on * L / h) % L];
    for(int k = 0 ; k < len ; k += h) {
        int w = 1;
        for(int j = k ; j < k + h / 2 ; ++j) {
        int u = a[j],t = mul(a[j + h / 2],w);
        a[j] = inc(u,t);
        a[j + h / 2] = inc(u,MOD - t);
        w = mul(w,wn);
        }
    }
    }
    if(on == -1) {
    int InvL = fpow(len,MOD - 2);
    for(int i = 0 ; i < len ; ++i) a[i] = mul(a[i],InvL);
    }
}
vector<int> operator - (vector<int> a,vector<int> b) {
    int s = max(a.size(),b.size());
    a.resize(s);b.resize(s);
    vector<int> c;c.clear();
    for(int i = 0 ; i < s ; ++i) c.pb(inc(a[i],MOD - b[i]));
    return c;
}
vector<int> operator + (vector<int> a,vector<int> b) {
    int s = max(a.size(),b.size());
    a.resize(s);b.resize(s);
    vector<int> c;c.clear();
    for(int i = 0 ; i < s ; ++i) c.pb(inc(a[i],b[i]));
    return c;
}
vector<int> operator * (vector<int> a,vector<int> b) {
    int t = a.size() + b.size() - 2,T = 1;
    while(T <= t) T <<= 1;
    vector<int> c;c.clear();
    NTT(a,T,1);NTT(b,T,1);
    for(int i = 0 ; i < T ; ++i) c.pb(mul(a[i],b[i]));
    NTT(c,T,-1);
    if(T > M + 1) c.resize(M + 1),T = M + 1;
    for(int i = T - 1 ; i > 0 ; --i) {
    if(!c[i]) c.pop_back();
    else break;
    }
    return c;
}
void dfs1(int u) {
    dep[u] = dep[fa[u]] + 1;
    siz[u] = 1;
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(v != fa[u]) {
        fa[v] = u;
        dfs1(v);
        siz[u] += siz[v];
        if(siz[v] > siz[son[u]]) son[u] = v;
    }
    }
}
void dfs2(int u) {
    dfn[u] = ++tot;Line[tot] = u;
    ++cnt;
    if(!top[u]) top[u] = u;
    if(son[u]) {
    top[son[u]] = top[u];
    dfs2(son[u]);
    }
    else {
    lsiz[top[u]] = cnt;
    cnt = 0;
    }
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(v != son[u] && v != fa[u]) dfs2(v);
    }
}
void Init() {
    W[0] = 1;W[1] = fpow(3,(MOD - 1) / L);
    for(int i = 2 ; i < L ; ++i) W[i] = mul(W[i - 1],W[1]);
    read(N);read(M);
    for(int i = 1 ; i <= N ; ++i) {
    read(B[i]);
    f[i][0].pb(1);
    f[i][1].pb(0),f[i][1].pb(B[i]);
    }
    int u,v;
    for(int i = 1 ; i < N ; ++i) {
    read(u);read(v);add(u,v);add(v,u);
    }
    dfs1(1);
    dfs2(1);
}
res_node DC(int l,int r) {
    if(l == r) {
    int u = Line[l];
    return (res_node){f[u][0],zero,zero,f[u][1]};
    }
    int mid = (l + r) >> 1;
    res_node wl = DC(l,mid),wr = DC(mid + 1,r);
    return (res_node){
    (wl.f00 + wl.f01) * (wr.f10 + wr.f00) - wl.f01 * wr.f10,
    (wl.f00 + wl.f01) * (wr.f11 + wr.f01) - wl.f01 * wr.f11,
    (wl.f10 + wl.f11) * (wr.f10 + wr.f00) - wl.f11 * wr.f10,
    (wl.f10 + wl.f11) * (wr.f01 + wr.f11) - wl.f11 * wr.f11,
    };
}
vector<int> mul(vector<int> *g,int l,int r) {
    if(l == r) return g[l];
    int mid = (l + r) >> 1;
    return mul(g,l,mid) * mul(g,mid + 1,r);
}
void Solve() {
    res_node t;
    for(int i = N ; i >= 1 ; --i) {
    int u = Line[i];
    if(top[u] == u) {
        for(int j = dfn[u] ; j <= dfn[u] + lsiz[u] - 1 ; ++j) {
        int tot = 0;
        int c = Line[j];
        for(int k = head[c] ; k ; k = E[k].next) {
            int v = E[k].to;
            if(v != fa[c] && v != son[c]) g[0][++tot] = f[v][0] + f[v][1],g[1][tot] = f[v][0];
        }
        if(!tot) continue;
        f[c][0] = mul(g[0],1,tot);
        f[c][1] = f[c][1] * mul(g[1],1,tot);
        }
        t = DC(dfn[u],dfn[u] + lsiz[u] - 1);
        f[u][0] = t.f00 + t.f01;
        f[u][1] = t.f10 + t.f11;
    }
    }
    f[1][0].resize(M + 1);f[1][1].resize(M + 1);
    out(inc(f[1][0][M],f[1][1][M]));enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Init();
    Solve();
    return 0;
}

转载于:https://www.cnblogs.com/ivorysi/p/9143127.html

06-21
<think>我们正在查询LOJ6279相关的编程题目或解决方案。LOJ(LibreOJ)是一个在线的评测系统,主要收录算法竞赛题目。根据题号6279,我们需要确定该题目的具体内容。由于我无法直接访问网络,我将基于已知信息进行推理。在算法竞赛中,LOJ的题目编号通常特定的题目对应。题号6279可能对应一个特定的问题。根据常见的题目类型,我们可以推测它可能涉及数据结构算法。然而,为了准确回答,我们可以尝试回忆或推断常见的LOJ题目。例如,LOJ6000系列题目多为数据结构题,如线段树、树状数组等。实际上,通过搜索记忆,我回想起LOJ6279是“数列分块入门3”(BlockArray3)题目。这是“分块”系列题目中的一题。题目描述:给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(即最大的小于x的数)。因此,用户需要的是关于LOJ6279题目的描述和解决方案。解决方案:由于题目要求分块处理,我们将数列分成若干块,每块大小为sqrt(n)。对于每个块,我们维护一个有序的数组(用于二分查找)以及一个加法标记(记录整个块被加了多少)。操作:1.区间加法:对于整块,直接更新加法标记;对于不完整的块,暴力更新元素值,然后重新排序该块(或者重新构建有序数组)。2.查询区间内小于x的前驱:遍历区间内的所有块。对于整块,在块的有序数组中二分查找小于(x-加法标记)的最大值;对于不完整的块,暴力遍历每个元素,判断是否小于x(注意加上加法标记)并更新最大值。代码实现(C++)示例:```cpp#include<iostream>#include<vector>#include<cmath>#include<algorithm>#include<climits>usingnamespacestd;constintMAXN=100010;constintBLOCK_SIZE=320;//约sqrt(MAXN)intn;vector<int>a;vector<int>block_add;//每块的加法标记vector<vector<int>>sorted_blocks;//每块的有序数组voidinit(){intblock_num=(n+BLOCK_SIZE-1)/BLOCK_SIZE;block_add.assign(block_num,0);sorted_blocks.resize(block_num);for(inti=0;i<n;i++){sorted_blocks[i/BLOCK_SIZE].push_back(a[i]);}for(inti=0;i<block_num;i++){sort(sorted_blocks[i].begin(),sorted_blocks[i].end());}}voidupdate_block(intblock_id){sorted_blocks[block_id].clear();intstart=block_id*BLOCK_SIZE;intend=min((block_id+1)*BLOCK_SIZE,n);for(inti=start;i<end;i++){sorted_blocks[block_id].push_back(a[i]);}sort(sorted_blocks[block_id].begin(),sorted_blocks[block_id].end());}voidadd(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;if(block_l==block_r){for(inti=l;i<=r;i++){a[i]+=c;}update_block(block_l);}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){a[i]+=c;}update_block(block_l);for(inti=block_l+1;i<block_r;i++){block_add[i]+=c;}for(inti=block_r*BLOCK_SIZE;i<=r;i++){a[i]+=c;}update_block(block_r);}}intquery(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;intans=-1;if(block_l==block_r){for(inti=l;i<=r;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}for(inti=block_l+1;i<block_r;i++){//在块i的有序数组中二分查找小于c-block_add[i]的最大值inttarget=c-block_add[i];autoit=lower_bound(sorted_blocks[i].begin(),sorted_blocks[i].end(),target);if(it!=sorted_blocks[i].begin()){it--;intval=*it+block_add[i];if(val>ans)ans=val;}}for(inti=block_r*BLOCK_SIZE;i<=r;i++){intval=a[i]+block_add[block_r];if(val<c){if(val>ans)ans=val;}}}returnans;}intmain(){cin>>n;a.resize(n);for(inti=0;i<n;i++){cin>>a[i];}init();for(inti=0;i<n;i++){intop,l,r,c;cin>>op>>l>>r>>c;l--;r--;//如果题目输入是1-indexed,则转换为0-indexedif(op==0){add(l,r,c);}else{cout<<query(l,r,c)<<endl;}}return0;}```注意:上述代码是示例代码,可能需要根据题目具体输入要求进行调整。§§相关问题§§1.LOJ6279题目的具体描述是什么?2.分块算法的时间复杂度是多少?3.除了分块,还有哪些方法可以解决LOJ6279?4.如何优化分块算法的常数?5.分块算法适用于哪些场景?</think>### LOJ 6279 题目分析解决方案 **题目描述**:LOJ 6279 是 LibreOJ 上的 **"数列分块入门 3"**,属于分块算法的经典练习题。核心要求如下: - **操作 1**:区间 $[l, r]$ 内每个数加上值 $c$ - **操作 2**:查询区间 $[l, r]$ 内小于 $c$ 的**最大元素值**(即前驱),不存在时返回 $-1$ #### 分块算法设计 分块的核心思想是将数列划分为 $\sqrt{n}$ 大小的块,平衡暴力操作批量处理。 ##### 关键数据结构 1. **块内有序数组**: - 每块维护一个排序后的数组,用于二分查找前驱。 - 示例:块 $B_i$ 的排序数组为 $S_i$。 2. **加法懒标记**: - 记录整块被加的总值 $add_i$(不影响块内有序性)。 ##### 操作实现 1. **区间加法($[l, r] + c$)**: - **整块**:直接更新懒标记 $add_i \gets add_i + c$,时间复杂度 $O(1)$。 - **碎块**:暴力修改元素值,并**重构有序数组**(排序),时间复杂度 $O(\sqrt{n} \log \sqrt{n})$。 2. **查询前驱($[l, r]$ 内 $< c$ 的最大值)**: - **整块**:在有序数组 $S_i$ 中二分查找 $c - add_i$ 的前驱,时间复杂度 $O(\log \sqrt{n})$。 - **碎块**:暴力遍历元素,检查 $a_j + add_i < c$ 并更新最大值,时间复杂度 $O(\sqrt{n})$。 #### 代码实现(C++) ```cpp #include <iostream> #include <vector> #include <cmath> #include <algorithm> #include <climits> using namespace std; const int MAXN = 100010; int n, block_size; vector<int> a; vector<int> add_tag; // 块的加法标记 vector<vector<int>> blocks; // 每块的有序数组 void init() { block_size = sqrt(n); int block_num = (n + block_size - 1) / block_size; add_tag.assign(block_num, 0); blocks.resize(block_num); for (int i = 0; i < n; i++) blocks[i / block_size].push_back(a[i]); for (int i = 0; i < block_num; i++) sort(blocks[i].begin(), blocks[i].end()); } void rebuild_block(int block_id) { blocks[block_id].clear(); int start = block_id * block_size; int end = min(start + block_size, n); for (int i = start; i < end; i++) blocks[block_id].push_back(a[i]); sort(blocks[block_id].begin(), blocks[block_id].end()); } void range_add(int l, int r, int c) { int block_l = l / block_size, block_r = r / block_size; if (block_l == block_r) { // 同一块内 for (int i = l; i <= r; i++) a[i] += c; rebuild_block(block_l); } else { // 左侧碎块 for (int i = l; i < (block_l + 1) * block_size; i++) a[i] += c; rebuild_block(block_l); // 中间整块 for (int i = block_l + 1; i < block_r; i++) add_tag[i] += c; // 右侧碎块 for (int i = block_r * block_size; i <= r; i++) a[i] += c; rebuild_block(block_r); } } int query_predecessor(int l, int r, int c) { int ans = -1; int block_l = l / block_size, block_r = r / block_size; // 左侧碎块暴力查询 for (int i = l; i < min(r + 1, (block_l + 1) * block_size); i++) { int val = a[i] + add_tag[block_l]; if (val < c && val > ans) ans = val; } // 中间整块二分查找 for (int i = block_l + 1; i < block_r; i++) { int target = c - add_tag[i]; auto it = lower_bound(blocks[i].begin(), blocks[i].end(), target); if (it != blocks[i].begin()) { it--; int val = *it + add_tag[i]; if (val < c && val > ans) ans = val; } } // 右侧碎块暴力查询 if (block_l != block_r) { for (int i = block_r * block_size; i <= r; i++) { int val = a[i] + add_tag[block_r]; if (val < c && val > ans) ans = val; } } return ans; } int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) cin >> a[i]; init(); for (int i = 0; i < n; i++) { int op, l, r, c; cin >> op >> l >> r >> c; l--; r--; // 转为0-indexed if (op == 0) range_add(l, r, c); else cout << query_predecessor(l, r, c) << endl; } return 0; } ``` #### 算法分析 - **时间复杂度**: - 单次修改/查询:$O(\sqrt{n} \log \sqrt{n})$(碎块排序主导)。 - 总操作 $m$ 次:$O(m \sqrt{n} \log n)$。 - **空间复杂度**:$O(n)$。 #### 优化技巧 1. **减少排序次数**: - 碎块修改时只重构受影响块的有序数组。 2. **块大小调整**: - 实测调整块大小为 $n^{0.6}$ 可能更快(需测试)。 #### 应用场景 分块算法适用于**强制在线**的区间问题(如 LOJ 的数列分块系列题),在 $O(\sqrt{n})$ 复杂度下平衡修改查询[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值