HDU 3594 Cactus(仙人掌图模板)

本文介绍了一种用于判断给定图是否为仙人掌图的算法。仙人掌图是一种特殊的图,其特点包括强连通性和每条边只属于一个环。文章通过示例详细解释了输入输出格式,并提供了一段实现该算法的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cactus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1934    Accepted Submission(s): 891

Problem Description
1. It is a Strongly Connected graph.
2. Each edge of the graph belongs to a circle and only belongs to one circle.
We call this graph as CACTUS.



There is an example as the figure above. The left one is a cactus, but the right one isn’t. Because the edge (0, 1) in the right graph belongs to two circles as (0, 1, 3) and (0, 1, 2, 3).
 

 

Input
The input consists of several test cases. The first line contains an integer T (1<=T<=10), representing the number of test cases.
For each case, the first line contains a integer n (1<=n<=20000), representing the number of points.
The following lines, each line has two numbers a and b, representing a single-way edge (a->b). Each case ends with (0 0).
Notice: The total number of edges does not exceed 50000.
 
Output
For each case, output a line contains “YES” or “NO”, representing whether this graph is a cactus or not.

Sample Input
2
4
0 1
1 2
2 0
2 3
3 2
0 0
4
0 1
1 2
2 3
3 0
1 3
0 0
 
Sample Output
YES
NO
 
仙人掌图的条件: (1)此图是强连通图;(2)此图每条边仅被一个环所包含
后面的性质1,2,3的解释在这里(
  1 #include <iostream>
  2 #include <vector> 
  3 #include <cstring>
  4 #include <stack>
  5 #define N 20010
  6 using namespace std;
  7 int n,m;
  8 bool flag;
  9 vector<int> mapp[N];
 10 stack<int> s;
 11 int dfn[N],low[N],sccno[N],ins[N],scc_cnt,indx;
 12 bool vis[N];
 13 void init(){
 14 for(int i=0;i<=n;i++){
 15         mapp[i].clear();
 16     }
 17     while(!s.empty()){
 18         s.pop();
 19     }
 20     flag=true;
 21     memset(vis,false,sizeof(vis));
 22     memset(sccno,0,sizeof(sccno));
 23     memset(low,0,sizeof(low));
 24     memset(dfn,0,sizeof(dfn));
 25     memset(ins,0,sizeof(ins));
 26 }
 27 void tarbfs(int u){
 28     indx++;
 29     dfn[u]=indx;
 30     low[u]=indx;
 31     ins[u]=1;
 32     s.push(u);
 33     int sum=0;
 34     int size=mapp[u].size();
 35     for(int i=0;i<size&&flag;i++){ 
 36         int v=mapp[u][i];
 37         if(vis[v]){//1
 38             flag=false;
 39             break;
 40         }
 41         if(dfn[v]==0){
 42             tarbfs(v);
 43             if(low[v]>dfn[u]){//2
 44                 flag=false;
 45                 break;
 46             }
 47             if(low[v]<dfn[u]){
 48                 sum++;
 49             }
 50             if(sum==2){//3
 51                 flag=false;
 52                 break;    
 53             }
 54             low[u]=min(low[u],low[v]);
 55         }
 56         else if(ins[v]){
 57             low[u]=min(low[u],dfn[v]);
 58             sum++;
 59             if(sum==2){
 60                 flag=false;
 61                 break;    
 62             }
 63         }
 64     }
 65     if(low[u]==dfn[u]&&flag){
 66         scc_cnt++;
 67         int x;
 68         do{
 69             if(s.empty()){
 70                 break;
 71             }
 72             x=s.top();
 73             s.pop();
 74             ins[x]=0;
 75             sccno[x]=scc_cnt;
 76         }while(x!=u);
 77     }
 78     vis[u]=true;
 79 }
 80 void Tarjan(){
 81     indx=0;
 82     scc_cnt=0;
 83     for(int i=1;i<=n&&flag;i++){
 84         if(!dfn[i]){
 85             tarbfs(i);
 86         }
 87     }
 88 }
 89 int main(){
 90     cin.sync_with_stdio(false);
 91     int a,b;
 92     int T;
 93     cin>>T;
 94     while(T--){
 95         cin>>n;
 96         init();
 97         while(cin>>a>>b&&(a||b)){
 98             mapp[a].push_back(b);
 99         }
100         Tarjan();
101         if(scc_cnt==1||flag){
102             cout<<"YES"<<endl;
103         }
104         else{
105             cout<<"NO"<<endl;
106         }
107     }
108     return 0;
109 }
2017-03-03 22:53:53

转载于:https://www.cnblogs.com/xjh-shin/articles/6498758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值