hdu 1207汉诺塔II 递推

本文探讨了在经典汉诺塔问题基础上增加一根柱子后的最优解法,通过递归和动态规划的方法寻找最少移动步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

汉诺塔问题变形题

问题描述:

在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;

分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)
     些时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1;
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
第(3)步结束后任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。
数值不是很大,int完全可以搞定,代码如下:
#include<stdio.h>
#include<math.h>
#define M 99999999
int main()
{
    int i,n,x,min,f[65];
    f[1]=1;
    f[2]=3;
    for(i=3;i<=65;i++)
    {
        min=M;
        for(x=1;x<i;x++)
            if(2*f[x]+pow(2,i-x)-1<min)
                min=2*f[x]+(int)pow(2,i-x)-1;
            f[i]=min;
    }
    while(~scanf("%d",&n))
        printf("%d\n",f[n]);
    return 0;
}

 

转载于:https://www.cnblogs.com/xtaq/p/3575099.html

资源下载链接为: https://pan.quark.cn/s/140386800631 通用模型文本分类实践的基本原理是,借助模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响模型推理效果,因此可先通过向量检索缩小范围,再由模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入模型。 代码实现上,模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用模型api打造工具;缺点是上限不高,仅针对一个分类任务部署模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值