poj 1651 Multiplication Puzzle(区间dp)

卡片乘法谜题最小化得分策略
本文探讨了一个基于卡片数字的乘法谜题,目标是在特定规则下,通过策略性地移除卡片来最小化总得分。文章提供了一种动态规划解决方案,通过计算不同区间内卡片移除的最小成本,最终得出全局最优解。

Description

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

The goal is to take cards in such order as to minimize the total number of scored points. 

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

Input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

Output

Output must contain a single integer - the minimal score.

Sample Input

6

10 1 50 50 20 5

Sample Output

3650

 

题意:已知一行数字 现在问你除两端的数字不能抽取以外没,每次抽取一个数字的花费都是当前数字的权值分别乘上两边数字的权值 问最小花费是多少

思路:我们不妨设dp[][]表示区间 i~j 中数字抽取的最小花费(i和j不能取)这样我们不难推出方程dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
const int inf=0x3f3f3f3f;
const ll mod=1e9+7;
int dp[107][107];
int a[107];
int main(){
    ios::sync_with_stdio(false);
    int n;
    while(cin>>n){
        memset(dp,inf,sizeof(dp));
        for(int i=1;i<=n;i++)
            cin>>a[i];
        for(int i=1;i<=n;i++){ //初始化 长度为1和2的区间都是不能合并的 花费为0 
            dp[i][i]=0;
            dp[i][i+1]=0;
        }
        for(int len=3;len<=n;len++){
            for(int i=1;i+len<=n+1;i++){
                int j=i+len-1;
                for(int k=i+1;k<j;k++)
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);    
            }
            
        }
        cout<<dp[1][n]<<endl;
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/wmj6/p/10705052.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值