766. Toeplitz Matrix

本文介绍了一种算法,用于判断一个给定的二维矩阵是否为Toeplitz矩阵,即每一条从左上到右下的对角线上元素是否相同。通过遍历矩阵的每个元素并与前一元素比较,实现高效判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.

Now given an M x N matrix, return True if and only if the matrix is Toeplitz.

Example 1:

Input:
matrix = [
[1,2,3,4],
[5,1,2,3],
[9,5,1,2]]
Output: True
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.

Example 2:

Input:
matrix = [
[1,2],
[2,2]]
Output: False
Explanation:
The diagonal "[1, 2]" has different elements.

Note:

  1. matrix will be a 2D array of integers.
  2. matrix will have a number of rows and columns in range [1, 20].
  3. matrix[i][j] will be integers in range [0, 99].

Follow up:

  1. What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
  2. What if the matrix is so large that you can only load up a partial row into the memory at once?
class Solution:
    def isToeplitzMatrix(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: bool
        """
        if len(matrix)==0:
            return True
        for i in range(1,len(matrix)):
            for j in range(1,len(matrix[0])):
                if matrix[i][j]!=matrix[i-1][j-1]:
                    return False
        return True

转载于:https://www.cnblogs.com/bernieloveslife/p/9801104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值