CS231n-lecture2-Image Classification pipeline 课堂笔记

本文介绍了图像分类的基础知识及面临的挑战,如视角变化、光线影响等,并详细讲解了数据驱动的方法,包括收集数据集、使用机器学习训练分类器及评估分类器等内容。

---恢复内容开始---

相关资源

 

 Event Type Date Description Course Materials
Lecture 2Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]

作业

It is due January 20 (i.e. in two weeks). Handed in through CourseWork
It includes:
- Write/train/evaluate a kNN classifier
- Write/train/evaluate a Linear Classifier (SVM and Softmax)
- Write/train/evaluate a 2-layer Neural Network (backpropagation!)
- Requires writing numpy/Python code

 Python Numpy

PPT

图像识别

语义鸿沟问题semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

(2)光线

(3)Deformation变形,姿势

(3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

(4)background clutter 背景杂斑

(5)Intraclassvariation 同类演变

Data-driven approach:

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

 

---恢复内容结束---

相关资源

 

 Event Type Date Description Course Materials
Lecture 2Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]

作业

It is due January 20 (i.e. in two weeks). Handed in through CourseWork
It includes:
- Write/train/evaluate a kNN classifier
- Write/train/evaluate a Linear Classifier (SVM and Softmax)
- Write/train/evaluate a 2-layer Neural Network (backpropagation!)
- Requires writing numpy/Python code

 Python Numpy

PPT

图像识别

语义鸿沟问题semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

(2)光线

(3)Deformation变形,姿势

(3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

(4)background clutter 背景杂斑

(5)Intraclassvariation 同类演变

Data-driven approach:

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

转载于:https://www.cnblogs.com/toone/p/6811942.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值