poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

本文探讨了SilverCowParty问题,即每头牛从各自农场出发到派对再返回的最短时间路线选择问题。该问题通过使用Dijkstra算法进行解决,并提供了完整的代码实现。代码中包括了两轮Dijkstra算法的应用,分别用于计算到派对地点和返回的最短时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 13611 Accepted: 6138

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

题目及算法分析:
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <iostream>
#include <string>
#include <stack>
#include <queue>
#include <algorithm>
#define N 1000+20
#define INF 0x3f3f3f3f

using namespace std;

int map[N][N];
int dis[N], ans[N];
bool vis[N];
int n, m, s;

int Dijkstra(int s)
{
	int i, j, k;
	for(i=1; i<=n; i++)
		dis[i]=map[s][i];
	vis[s]=true;
	for(k=1; k<n; k++)
	{
		int mi=INF, pos;
		for(i=1; i<=n; i++)
		{
			if(vis[i]==false && dis[i]<mi )
			{
				mi=dis[i]; pos=i;
			}
		}
		vis[pos]=true;
		for(j=1; j<=n; j++)
		{
			if(vis[j]==false && dis[j]>dis[pos]+map[pos][j] )
				dis[j]=dis[pos]+map[pos][j];
		}
	}
	for(i=1; i<=n; i++)
	{
		ans[i]=ans[i]+dis[i];
	}
	return 0;
}

void turn_over()
{
	for(int i=1; i<=n; i++)
	{
		for(int j=1; j<i; j++)
			swap(map[i][j], map[j][i] );
	}
}

int main()
{
	scanf("%d %d %d", &n, &m, &s);
	int u, v, w;

	for(int i=1; i<=n; i++)
		for(int j=1; j<=n; j++)
		{
			if(i==j) map[i][j]=0;
			else map[i][j]=INF;
		}

	for(int i=0; i<m; i++)
	{
		scanf("%d %d %d", &u, &v, &w);
		map[u][v] = w;
	}
	memset(vis, false, sizeof(vis));
	memset(ans, 0, sizeof(ans));
	Dijkstra(s);
	turn_over();
	memset(vis, false, sizeof(vis));
    Dijkstra(s);
	int cc=-1;
    for(int i=1; i<=n; i++)
    {
        if(ans[i]>cc && ans[i]<INF )
            cc=ans[i];
    }
    printf("%d\n", cc );
	return 0;
}

 

转载于:https://www.cnblogs.com/yspworld/p/4372506.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值