LeetCode OJ - Best Time to Buy and Sell Stock

本文介绍了一种算法,用于寻找给定股票价格数组中能够获得的最大利润,通过维护局部最小值并迭代扫描数组来实现。当允许进行一次交易时,算法能够找出买入和卖出的最佳时机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:本文为博主原创文章,未经博主同意不得转载。

https://blog.youkuaiyun.com/xiezhihua120/article/details/32939749

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

分析:维护一个局部最小值,迭代扫描数组,当在 i 位置卖出时值须要知道过去的最低价minPrices就可以,在i位置得到最大收益。多次迭代求出在n-1位置得最大收益。

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if(prices.size() < 2) return 0;
        int ret = 0;
        int minPrices = prices[0];
        for(int i = 1; i < prices.size(); i++) {
            int tmp = prices[i] - minPrices;
            ret = max(ret, tmp);
            minPrices = min(minPrices, prices[i]);
        }
        return ret;
    }
};

此处须要注意測试用例,当没有元素或者仅仅有一个元素时,最大获利为0

转载于:https://www.cnblogs.com/xfgnongmin/p/10697872.html

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值