CodeForces 363B Fence

本文介绍了一道算法题目,目标是在一系列不同高度的围栏中找出连续的k块围栏,使得这些围栏的高度之和最小,并给出了具体的解决方法及代码实现。

Fence

Time Limit: 1000ms
Memory Limit: 262144KB
This problem will be judged on  CodeForces. Original ID: 363B
64-bit integer IO format: %I64d      Java class name: (Any)
There is a fence in front of Polycarpus's home. The fence consists of  n planks of the same width which go one after another from left to right. The height of the i-th plank is hi meters, distinct planks can have distinct heights.

 

 
Fence for n = 7 and h = [1, 2, 6, 1, 1, 7, 1]

Polycarpus has bought a posh piano and is thinking about how to get it into the house. In order to carry out his plan, he needs to take exactly k consecutive planks from the fence. Higher planks are harder to tear off the fence, so Polycarpus wants to find such k consecutive planks that the sum of their heights is minimal possible.

Write the program that finds the indexes of k consecutive planks with minimal total height. Pay attention, the fence is not around Polycarpus's home, it is in front of home (in other words, the fence isn't cyclic).

Input

The first line of the input contains integers n and k (1 ≤ n ≤ 1.5·105, 1 ≤ k ≤ n) — the number of planks in the fence and the width of the hole for the piano. The second line contains the sequence of integers h1, h2, ..., hn (1 ≤ hi ≤ 100), where hi is the height of the i-th plank of the fence.

 

Output

Print such integer j that the sum of the heights of planks jj + 1, ..., j + k - 1 is the minimum possible. If there are multiple such j's, print any of them.

 

Sample Input

Input
7 3
1 2 6 1 1 7 1
Output
3

Hint

In the sample, your task is to find three consecutive planks with the minimum sum of heights. In the given case three planks with indexes 3, 4 and 5 have the required attribute, their total height is 8.

 

Source

 
解题:瞎搞
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 200010;
 4 int n,k,sum[maxn];
 5 int main(){
 6     while(~scanf("%d %d",&n,&k)){
 7         int theMin = INT_MAX,idx = -1;
 8         for(int i = 1; i <= n; ++i){
 9             scanf("%d",sum+i);
10             sum[i] += sum[i-1];
11             if(i >= k && sum[i] - sum[i-k] < theMin){
12                 theMin = sum[i] - sum[i-k];
13                 idx = i - k + 1;
14             }
15         }
16         printf("%d\n",idx);
17     }
18     return 0;
19 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4619667.html

### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值