Painting Fence

本文探讨了一个有趣的涂色问题:如何用最少的笔划将不同高度的围栏板全部涂成橙色。通过递归算法,对比了全部横涂与竖涂所需的最小次数,并给出了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Painting Fence
Time Limit:1000MS     Memory Limit:524288KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

Bizon the Champion isn't just attentive, he also is very hardworking.

Bizon the Champion decided to paint his old fence his favorite color, orange. The fence is represented as n vertical planks, put in a row. Adjacent planks have no gap between them. The planks are numbered from the left to the right starting from one, the i-th plank has the width of 1 meter and the height of ai meters.

Bizon the Champion bought a brush in the shop, the brush's width is 1 meter. He can make vertical and horizontal strokes with the brush. During a stroke the brush's full surface must touch the fence at all the time (see the samples for the better understanding). What minimum number of strokes should Bizon the Champion do to fully paint the fence? Note that you are allowed to paint the same area of the fence multiple times.

Input

The first line contains integer n(1 ≤ n ≤ 5000) — the number of fence planks. The second line contains n space-separated integersa1, a2, ..., an(1 ≤ ai ≤ 109).

Output

Print a single integer — the minimum number of strokes needed to paint the whole fence.

Sample Input

Input
5
2 2 1 2 1
Output
3
Input
2
2 2
Output
2
Input
1
5
Output
1


#include<cstdio>  
#include<algorithm>  
using namespace std;  
const int MAXN = 5005;  
int a[MAXN];  
int solve(int l, int r)  
{  
    int k = l;  
    if(l > r) return 0;  
    for(int i = l; i <= r; i++)  
        if(a[i] < a[k])  
            k = i;  
    int tmp = a[k];  
    for(int i = l; i <= r; i++)  
        a[i] -= tmp;  
    return min(r-l+1, solve(l, k-1) + solve(k+1, r) + tmp);  
}  
int main()  
{  
    int n;  
    scanf("%d",&n);  
    for(int i = 0; i < n; i++)  
        scanf("%d",&a[i]);  
    printf("%d\n", solve(0, n-1));  
    return 0;  
}  
View Code

递归,每次做的到操作都是比较全部横着涂完和全部竖着涂完的涂刷到次数较小的次数,递归出答案。

转载于:https://www.cnblogs.com/superxuezhazha/p/5693036.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值