*AtCoder Regular Contest 096E - Everything on It

探讨了在特定条件下,如何计算不同拉面酱料组合的方案数量。使用容斥原理与组合数学方法,通过递推公式计算出任意数量酱料在不限制碗面数量时的合法排列组合。

$n \leq 3000$个酱,丢进拉面里,需要没两碗面的酱一样,并且每个酱至少出现两次,面的数量随意。问方案数。对一给定质数取模。

没法dp就大力容斥辣。。

$Ans=\sum_{i=0}^n (-1)^i \binom{n}{i} f(i)$

其中$f(i)$是:$i$个酱不符合题意(就是没出现或出现一次),而其他酱随意的方案数。

然后先考虑$i$个坏酱:$g(i,j)$--$i$个坏酱,放$j$碗面里方案,因为$j$最多为$i$,然后酱是可以出现一次或不出现的。这是一个斯二林改,$g(i,j)=g(i-1,j-1)+g(i-1,j)*(j+1)$,$j+1$的$1$就是可以不丢进去。

然后考虑自由酱。$h(i,j)$--$g(i,j)$的基础上再考虑$n-i$个自由酱,$h(i,j)=g(i,j)2^{2^{n-i}}2^{(n-i)j}$,$2^{2^{n-i}}$是指这$j$碗面之外的情况,就好像只有这$n-i$个酱然后胡乱放;$2^{(n-i)j}$就是这$j$碗面的其他酱随便放,每碗面有$2^{n-i}$种选择。

然后$f(i)=\sum h(i,j)$,就没了。

转载于:https://www.cnblogs.com/Blue233333/p/8909173.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值