HDU 4391 Paint The Wall(分块+延迟标记)

本文解析了HDU4391 PaintTheWall问题的分块算法解决方案,针对线段树剪枝存在的问题,介绍了如何通过分块算法有效地处理区间更新与查询操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paint The Wall

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3427    Accepted Submission(s): 955

Problem Description
As a amateur artist, Xenocide loves painting the wall. The wall can be considered as a line consisting of n nodes. Each node has its own color.

Xenocide spends all day in front of the wall. Sometimes, he paints some consecutive nodes so that these nodes have the same color. When he feels tired, he focuses on a particular color and counts the number of nodes that have this color within a given interval.

Now Xenocide is tired of counting, so he turns to you for help.
 

 

Input
The input consists of several test cases.
The first line of each test case contains two integer n, m(1<=n, m<=100000) indicating the length of the wall and the number of queries.
The following line contains N integers which describe the original color of every position.
Then m lines follow. Each line contains 4 non-negative integers a, l, r, z(1<=a<=2, 0<=l<=r<n , 0<=z<231).
a = 1 indicates that Xenocide paints nodes between l and r and the resulting color is z.
a = 2 indicates that Xenocide wants to know how many nodes between l and r have the color z.
 

 

Output
Print the corresponding answer for each queries.
 

 

Sample Input
5 5
1 2 3 4 0
2 1 3 3
1 1 3 1
2 1 3 3
2 0 3 1
2 3 4 1
 

 

Sample Output
1
0
4
1
 

 

题目链接:HDU 4391

一开始一看以为是线段树,虽然这题有很多人线段树+剪枝过的,如果用的是区间最大值最小值剪枝,粗略一想确实剪枝挺强,它用了一种二分的思想——区间大小跟最大值最小值之差肯定是存在单调不减的关系,但是对于特殊数据就没戏了,比如151515151515,然后查询1,n,3,这样一来3确实一直在1~5之间,但是会一直递归到根节点,最后却连发现一个3都没有,因此这题正解之一应该是分块算法,每一个块维护这个块所控制区间的颜色及每一个颜色的数量信息,此处有分块的区间更新操作,因此需要lazy的思想,跟线段树一样,整块打标记,标记传递时把信息传递到真实数组里去,学习一个分块下的延迟标记的用法,最后注意一下题目中的数组都是从0开始的

代码:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
const int M = sqrt(N) + 10;
struct block
{
	int color, l, r;
	map<int, int>info;
	inline int len()
	{
		return r - l + 1;
	}
};
block B[M];
int arr[N], belong[N];
int unit, bcnt;

void init(int n)
{
	unit = sqrt(n);
	bcnt = n / unit;
	if (n % unit)
		++bcnt;
	for (int i = 1; i <= bcnt; ++i)
	{
		B[i].l = (i - 1) * unit + 1;
		B[i].r = i * unit;
		B[i].color = -1;
		B[i].info.clear();
	}
	B[bcnt].r = n;
	for (int i = 1; i <= n; ++i)
	{
		belong[i] = (i - 1) / unit + 1;
		++B[belong[i]].info[arr[i]];
	}
}
void pushdown(int x)
{
	if (~B[x].color)
	{
		for (int i = B[x].l; i <= B[x].r; ++i)
			arr[i] = B[x].color;
		B[x].info.clear();
		B[x].info[B[x].color] = B[x].len();
		B[x].color = -1;
	}
}
void update(int l, int r, int c)
{
	int bl = belong[l], br = belong[r];
	for (int i = bl + 1; i < br; ++i)
		B[i].color = c;
	if (bl != br)
	{
		pushdown(bl);
		pushdown(br);
		for (int i = l; i <= B[bl].r; ++i)
		{
			--B[bl].info[arr[i]];
			++B[bl].info[c];
			arr[i] = c;
		}
		for (int i = B[br].l; i <= r; ++i)
		{
			--B[br].info[arr[i]];
			++B[br].info[c];
			arr[i] = c;
		}
	}
	else
	{
		pushdown(bl);
		for (int i = l; i <= r; ++i)
		{
			--B[bl].info[arr[i]];
			++B[bl].info[c];
			arr[i] = c;
		}
	}
}
int query(int l, int r, int c)
{
	int ret = 0;
	int bl = belong[l], br = belong[r];
	for (int i = bl + 1; i < br; ++i) //先处理中间
	{
		if (~B[i].color)
			ret += B[i].len() * (B[i].color == c);
		else
		{
			if (B[i].info.find(c) != B[i].info.end())
				ret += B[i].info[c];
		}
	}
	if (bl == br)
	{
		pushdown(bl);
		for (int i = l; i <= r; ++i)
			ret += (arr[i] == c);
	}
	else
	{
		pushdown(bl);
		pushdown(br);
		for (int i = l; i <= B[bl].r; ++i)
			ret += (arr[i] == c);
		for (int i = B[br].l; i <= r; ++i)
			ret += (arr[i] == c);
	}
	return ret;
}
int main(void)
{
	int n, m, a, l, r, z, i;
	while (~scanf("%d%d", &n, &m))
	{
		for (i = 1; i <= n; ++i)
			scanf("%d", &arr[i]);
		init(n);
		while (m--)
		{
			scanf("%d%d%d%d", &a, &l, &r, &z);
			++l, ++r;
			if (a == 1)
				update(l, r, z);
			else
				printf("%d\n", query(l, r, z));
		}
	}
	return 0;
}

转载于:https://www.cnblogs.com/Blackops/p/6842969.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值