RPN(region proposal network)之理解

在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是

“相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归,就像

卡尔曼滤波一样,最终结果是基于观测量加上一个预测量。这里将的不错,公式和代码也

切合。

下面部分来源:http://www.cnblogs.com/dudumiaomiao/p/6560841.html
主要步骤,

回归/微调:

回归/微调的对象是什么? 

(4)   Bounding-box regression(边框回归) 
那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 
 

 

和知乎   https://www.zhihu.com/question/42205480     的回答:

这里输出的并不是一个boundingbox的左上右下坐标,而是一个修改量(boundingbox regression)。在r-cnn的supplementary material中,给出了下面几个公式
v2-e63f33b16aff3345d984a08eec143322_hd.png这里面的

 

这里面的P就是的anchor(高、宽、中心),而里面的d_{x} d_{y}d_{w}d_{h}是rpn_bbox层输出的四个值,G就是修改之后的高、宽、中心。


作者:刘缘
链接:https://www.zhihu.com/question/42205480/answer/128259995
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

转载于:https://www.cnblogs.com/YouXiangLiThon/p/7685576.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值