杨辉三角

本文提供了一种使用Java编程语言实现杨辉三角的方法。通过三种不同的方法(M1、M2、M3)展示了如何生成杨辉三角,并对其进行了详细的代码解析。最优解M3不仅实现了杨辉三角的生成,还考虑了输出格式的美观。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



public class 杨辉三角 {
    public static void main(String[] args) {
        // M1();
        // M2();
        M3();

    }

    private static void M3() { // 最优解
        int[][] iArray = new int[10][];
        for (int i = 0; i < 10; i++) {
            iArray[i] = new int[i + 1];
            for (int k = 9; k > i; k--) {
                System.out.print("  ");
            }
            for (int j = 0; j <= i; j++) {
                if (j == 0 || j == i) {
                    iArray[i][j] = 1;
                    System.out.print(iArray[i][j] + "   ");
                } else {
                    iArray[i][j] = iArray[i - 1][j] + iArray[i - 1][j - 1];
                    System.out.print(iArray[i][j] + "   ");
                }

            }
            System.out.println();// 换行
        }
    }

    private static void M2() {
        int[][] pas = new int[8][8];

        for (int i = 0; i < pas.length; i++) {
            pas[i][0] = 1;
            pas[i][i] = 1;

            for (int j = 1; j < i; j++) {
                pas[i][j] = pas[i - 1][j - 1] + pas[i - 1][j];
            }
        }
        for (int i = 0; i < pas.length; i++) {
            for (int j = 0; j <= i; j++) {
                System.out.print(String.format("%-5d", pas[i][j]));

            }
            System.out.println(" ");
        }
    }

    private static void M1() {
        int n = 8;
        int[][] arr = new int[n][n];
        for (int i = 0; i < arr.length; i++) {
            for (int k = arr.length; k > i; k--) {
                System.out.print(" ");

            }
            for (int j = 0; j < i; j++) {

                if (i == j || j == 0) {
                    arr[i][j] = 1;
                    System.out.print(arr[i][j] + " ");
                } else {
                    arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
                    System.out.print(arr[i][j] + " ");
                }
            }
            System.out.println();
        }
    }

}

转载于:https://www.cnblogs.com/dgwblog/p/7887640.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值