tf.Session()、tf.InteractiveSession()

TF.Session与TF.InteractiveSession区别
本文详细解析了tf.Session()与tf.InteractiveSession()的主要区别。tf.InteractiveSession()使自身成为默认session,允许eval()和run()函数直接使用,而tf.Session()则需显式指定或通过with语句设置为默认。这对于理解TensorFlow中session的使用至关重要。

tf.Session()和tf.InteractiveSession()的区别

官方tutorial是这么说的:

The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that session to run ops.

翻译一下就是:tf.InteractiveSession()是一种交互式的session方式,它让自己成为了默认的session,也就是说用户在不需要指明用哪个session运行的情况下,就可以运行起来,这就是默认的好处。这样的话就是run()和eval()函数可以不指明session啦。

对比一下:

复制代码
import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
sess=tf.Session()
print (c.eval())
复制代码

上面的代码编译是错误的,显示错误如下:

ValueError: Cannot evaluate tensor using `eval()`: No default session is registered. Use `with sess.as_default()` or pass an explicit session to `eval(session=sess)`

复制代码
import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
sess=tf.InteractiveSession()
print (c.eval())
复制代码

而用InteractiveSession()就不会出错,说白了InteractiveSession()相当于:

sess=tf.Session()
with sess.as_default():

换句话说,如果说想让sess=tf.Session()起到作用,一种方法是上面的with sess.as_default();另外一种方法是

sess=tf.Session()
print (c.eval(session=sess))

其实还有一种方法也是with,如下:

复制代码
import tensorflow as tf
import numpy as np

a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
    #print (sess.run(c))
    print(c.eval())
复制代码

总结:tf.InteractiveSession()默认自己就是用户要操作的session,而tf.Session()没有这个默认,因此用eval()启动计算时需要指明session。

我们都在通往真理的路上。

转载于:https://www.cnblogs.com/fpzs/p/10288407.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值