这一题是比较简单的动态规划,状态f[i]表示走前i个棋子时的最高分数,状态转移方程为f[i] = {max(f[j]), i > j && step[i] > step[j] + step[i]}.
AC code:
1 ude <iostream>
2 #define MAX 1000
3 using namespace std;
4
5 int step[MAX];
6 int f[MAX];
7 int n;
8 int max_sum(int i)
9 {
10 int max = 0;
11 int j;
12 for(j = 0; j < i; j++)
13 {
14 if(f[j] > max && step[j] < step[i])
15 {
16 max = f[j];
17 }
18 }
19 return max;
20 }
21
22 int main()
23 {
24 int max;
25 while(scanf("%d", &n)!=EOF && n)
26 {
27 memset(step, 0, sizeof(step));
28 memset(f, 0, sizeof(f));
29 for(int i = 0; i < n; i++)
30 scanf("%d", &step[i]);
31 f[0] = step[0];
32 max = 0;
33 for(int i = 1; i < n; i++)
34 f[i] = max_sum(i) + step[i];
35 for(int i = 0; i < n; i++)
36 if(f[i] > max)
37 max = f[i];
38 printf("%d\n", max);
39 }
40 return 0;
41 }