【bzoj1911】 Apio2010—特别行动队

本文详细解析了一道经典的斜率优化动态规划问题,通过实例解释了如何利用斜率优化技巧来提高DP算法效率。介绍了问题背景、DP状态转移方程,并给出了具体的实现代码。

http://www.lydsy.com/JudgeOnline/problem.php?id=1911 (题目链接)

题意

  给出一个序列,将序列分成连续的几段,每段的价值为a*s*s+b*s+c,其中a,b,c为给定常数,s为这一段中所有数之和。求最大价值和。

Solution

  斜率优化。

  dp方程:$${f[i]=max(f[j]+a*(s[i]-s[j])^2+b*(s[i]-s[j])+c)}$$

  其中${s[i]}$为前缀和,${f[i]}$表示从1~i的最大价值。

  斜率式:$${s[i]*(2*a*s[j])+f[i]=(f[j]-b*s[j]+a*s[j]^2)+a*s[i]^2+b*s[i]+c}$$

  所以决策${j}$映射到平面直角坐标系上就是:${(2*a*s[j],f[j]-b*s[j]+a*s[j]^2)}$。斜率:${s[i]}$为正且单增;横坐标${2*a*s[j]}$单减(${a}$小于0,${s[j]}$单增),所以单调队列里面的点长成这样:

 

细节

  开long long。

代码

// bzoj1911
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1e18
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;

const int maxn=1000010;
LL f[maxn],s[maxn],a,b,c;
int n,q[maxn];

double slope(int i,int j) {
	return (double)((f[i]-b*s[i]+a*s[i]*s[i])-(f[j]-b*s[j]+a*s[j]*s[j]))/(double)((2*a*s[i])-(2*a*s[j]));
}
int main() {
	scanf("%d",&n);
	scanf("%lld%lld%lld",&a,&b,&c);
	for (int i=1;i<=n;i++) scanf("%lld",&s[i]),s[i]+=s[i-1];
	int l=1,r=1;q[1]=0;
	for (int i=1;i<=n;i++) {
		while (l<r && slope(q[l],q[l+1])<=s[i]) l++;
		f[i]=f[q[l]]+a*(s[i]-s[q[l]])*(s[i]-s[q[l]])+b*(s[i]-s[q[l]])+c;
		while (l<r && slope(q[r-1],q[r])>slope(q[r],i)) r--;
		q[++r]=i;
	}
	printf("%lld",f[n]);
	return 0;
}

  

转载于:https://www.cnblogs.com/MashiroSky/p/6013532.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值