Luogu P3802 小魔女帕琪

本文介绍了一道关于小魔女帕琪使用不同属性魔法与吸血鬼蕾咪战斗的问题。通过数学计算得出帕琪释放特定魔法序列——帕琪七重奏的期望次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P3802 小魔女帕琪

 

题目背景

从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼。

帕琪能熟练使用七种属性(金、木、水、火、土、日、月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从而唱出强力的魔法。比如说为了加强攻击力而将火和木组合,为了掩盖弱点而将火和土组合等等,变化非常丰富。

题目描述

现在帕琪与强大的夜之女王,吸血鬼蕾咪相遇了,夜之女王蕾咪具有非常强大的生命力,普通的魔法难以造成效果,只有终极魔法:帕琪七重奏才能对蕾咪造成伤害。帕琪七重奏的触发条件是:连续释放的7个魔法中,如果魔法的属性各不相同,就能触发一次帕琪七重奏。

现在帕琪有7种属性的能量晶体,分别为a1,a2,a3,a4,a5,a6,a7(均为自然数),每次释放魔法时,会随机消耗一个现有的能量晶体,然后释放一个对应属性的魔法。

现在帕琪想知道,她释放出帕琪七重奏的期望次数是多少,可是她并不会算,于是找到了学OI的你

输入输出格式

输入格式:

 

一行7个数字,a1,a2,a3,a4,a5,a6,a7

 

输出格式:

 

一个四舍五入保留3位的浮点数

 

输入输出样例

输入样例#1:
1 1 1 1 1 1 1

  

输出样例#1:
1.000

  

说明

样例说明:

显然一定会触发一次帕琪七重奏

数据范围:

对于30%的测试点,a1+a2+a3+a4+a5+a6+a7<=10

对于100%的测试点,a1+a2+a3+a4+a5+a6+a7<=10^9

by-szc

 

 


 

 

题目就是这样的

题目中已经明确说了问的是期望次数,所以这是一道期望啦

既然帕琪所拥有的水晶的数量n我们可以求出,就是七个数相加

显然帕琪一共会释放n次魔法

而每次释放魔法后在之后的六次中只有魔法的种类全都不一样才会触发帕琪的大

所以我们的任务就变成了求每一次释放膜法同时触发大招的期望的和

而每一次的期望就是7的阶乘再乘以每一种水晶的数量除以所有水晶的数量减去当前的位置的编号

 

$$
\large{n = \sum_{i=1}^{7}a_i\\Ans = \sum_{i=0}^{6}\frac{a_{i+1}}{n-i}}
$$

 

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

double n, a[12], ans, js;

int main() {
	for(int i=1; i<=7; i++) {
		scanf("%lf", &a[i]);
		n += a[i];
	}
	js = 1*2*3*4*5*6*7;
	ans = js * a[1]/(n-0) * a[2]/(n-1) * a[3]/(n-2) * a[4]/(n-3) * a[5]/(n-4) * a[6]/(n-5) * a[7];
	printf("%.3lf", ans);
}

 

  

 

 

转载于:https://www.cnblogs.com/bljfy/p/9247093.html

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值