Let us define two functions f and g on positive integer numbers.

You need to process Q queries. In each query, you will be given three integers l, r and k. You need to print the number of integers xbetween l and r inclusive, such that g(x) = k.
The first line of the input contains an integer Q (1 ≤ Q ≤ 2 × 105) representing the number of queries.
Q lines follow, each of which contains 3 integers l, r and k (1 ≤ l ≤ r ≤ 106, 1 ≤ k ≤ 9).
For each query, print a single line containing the answer for that query.
4
22 73 9
45 64 6
47 55 7
2 62 4
1
4
0
8
4
82 94 6
56 67 4
28 59 9
39 74 4
3
1
1
5
In the first example:
- g(33) = 9 as g(33) = g(3 × 3) = g(9) = 9
- g(47) = g(48) = g(60) = g(61) = 6
- There are no such integers between 47 and 55.
- g(4) = g(14) = g(22) = g(27) = g(39) = g(40) = g(41) = g(58) = 4
这道题就是直接暴力应该会超时,用前缀和处理一下就可以了(吐槽,一开始都没看懂题,本咸鱼就没读懂过带公式的题(╥╯^╰╥))
代码:
//B. Recursive Queries-前缀和 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> #include<queue> #include<stdlib.h> using namespace std; const int maxn=1e6+10; int a[10][maxn]; int fun(int x){ if(x<10)return x; int sum=1; while(x){ sum*=x%10>0?x%10:1; x/=10; } return fun(sum); } void qianzhuihe(){ for(int i=1;i<=1000000;i++) a[fun(i)][i]++; for(int i=1;i<10;i++){ for(int j=1;j<=1000000;j++) a[i][j]+=a[i][j-1]; } } int main(){ qianzhuihe(); int t; scanf("%d",&t); while(t--){ int l,r,k; scanf("%d%d%d",&l,&r,&k); printf("%d\n",a[k][r]-a[k][l-1]); } return 0; }