DZY Loves Sequences

本文介绍了一种寻找最长递增子序列的算法,通过处理输入序列并利用动态规划思想来找出可更改一个数使子序列严格递增的最长长度。文章提供了完整的C++代码实现,并通过样例输入输出展示其正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DZY Loves Sequences
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

DZY has a sequence a, consisting of n integers.

We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

You only need to output the length of the subsegment you find.

Input

The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Output

In a single line print the answer to the problem — the maximum length of the required subsegment.

Sample test(s)
input
6
7 2 3 1 5 6
output
5
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100005
#define INF 0x3f3f3f3f
int a[N],b[N],c[N];
int main()
{
    int n,i;
    while(~scanf("%d",&n))
    {
        memset(c,0,sizeof(c));
        memset(b,0,sizeof(b));
        for(i = 1; i<= n ; i++) scanf("%d",&a[i]);
        b[1] = 1;
        for(i = 2 ; i <= n ; i++){
            if(a[i]>a[i-1]) b[i] = b[i-1]+1;
            else b[i] = 1;
        }
        c[n] = 1;
        for(i = n-1 ; i>=1 ; i--){
            if(a[i]<a[i+1]) c[i] = c[i+1] +1;
            else c[i] = 1;
        }
        int ans = max(c[2]+1,b[n-1]+1);
        for(i = 2 ; i < n ; i++){
            if(a[i+1]>a[i-1]+1) ans = max(ans,b[i-1]+c[i+1]+1);
            else ans = max(ans,max(b[i-1]+1,c[i+1]+1));
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/llei1573/p/3852959.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值