SPOJ - AMR11J-BFS

GoblinWars博弈模拟
本文介绍了一道关于文明扩张和战争模拟的问题。多个文明在一个二维网格中进行扩张,当两个或以上的文明同时扩张到同一未被占领的格子时会发生战争。文章提供了问题的背景、输入输出格式以及解决思路。

原题链接:https://www.spoj.com/problems/AMR11J/en/

暑期训练VJ链接:https://vjudge.net/contest/237052#problem/J

参考博客链接:https://blog.youkuaiyun.com/akahieveman/article/details/52029082

AMR11J - Goblin Wars

The wizards and witches of Hogwarts School of Witchcraft found Prof. Binn's History of Magic lesson to be no less boring than you found your own history classes.  Recently Binns has been droning on about Goblin wars, and which goblin civilization fought which group of centaurs where etc etc.  The students of Hogwarts decided to use the new-fangled computer to figure out the outcome of all these wars instead of memorizing the results for their upcoming exams.  Can you help them?

 

civilization fought which group of centaurs where etc etc.  The students of Hogwarts decided to use the new-fangled computer to figure out the outcome of all these wars instead of memorizing the results for their upcoming exams.  Can you help them?
The magical world looks like a 2-D R*C grid. Initially there are many civilizations, each civilization occupying exactly one cell. A civilization is denoted by a lowercase letter in the grid. There are also certain cells that are uninhabitable (swamps, mountains, sinkholes etc.) - these cells are denoted by a '#' in the grid. All the other cells - to which the civilizations can move  - are represented by a '.' in the grid.
A cell is said to be adjacent to another cell if they share the same edge - in other words, for a cell (x,y), cells (x-1, y), (x, y-1), (x+1, y), (x, y+1) are adjacent, provided they are within the boundaries of the grid.   Every year each civilization will expand to all unoccupied adjacent cells. If it is already inhabited by some other civilization, it just leaves the cell alone. It is possible that two or more civilizations may move into an unoccupied cell at the same time - this will lead to a battle between the civilizations and the cell will be marked with a '*'. Note that the civilizations fighting in a particular cell do not try to expand from that cell, but will continue to expand from other cells, if possible.
Given the initial grid, output the final state of the grid after no further expansion by any civilization is possible.
Input (STDIN):
The first line contains T, the number of cases. This is followed by T test case blocks.
Each test case contains two integers, R, C.
This is followed by R lines containing a string of length C. The j-th letter in the i-th row describes the state of the cell in year 0.
Each cell is either a
1. '.' which represents an unoccupied cell
2. '#' which represents a cell that cannot be occupied
3. A civilization represented by a lowercase letter ('a' - 'z')
Output (STDOUT):
For each test case, print the final grid after no expansion is possible. Apart from the notations used in the input, use '*' to denote that a battle is being waged in that particular cell. 
Print a blank line at the end of each case.
Constraints:
1 <= R, C <= 500
1 <= T <= 5
Time Limit:  3 s
Memory Limit: 64 MB
Sample Input:
5
3 5
#####
a...b
#####
3 4
####
a..b
####
3 3
#c#
a.b
#d#
3 3
#c#
...
a.b
3 5
.....
.#.#.
a...b
Sample Output:
#####
aa*bb
#####
####
aabb
####
#c#
a*b
#d#
#c#
acb
a*b
aa*bb
a#.#
aa*bb

The magical world looks like a 2-D R*C grid. Initially there are many civilizations, each civilization occupying exactly one cell. A civilization is denoted by a lowercase letter in the grid. There are also certain cells that are uninhabitable (swamps, mountains, sinkholes etc.) - these cells are denoted by a '#' in the grid. All the other cells - to which the civilizations can move  - are represented by a '.' in the grid.

 

A cell is said to be adjacent to another cell if they share the same edge - in other words, for a cell (x,y), cells (x-1, y), (x, y-1), (x+1, y), (x, y+1) are adjacent, provided they are within the boundaries of the grid.   Every year each civilization will expand to all unoccupied adjacent cells. If it is already inhabited by some other civilization, it just leaves the cell alone. It is possible that two or more civilizations may move into an unoccupied cell at the same time - this will lead to a battle between the civilizations and the cell will be marked with a '*'. Note that the civilizations fighting in a particular cell do not try to expand from that cell, but will continue to expand from other cells, if possible.

Given the initial grid, output the final state of the grid after no further expansion by any civilization is possible.

 

Input (STDIN):

The first line contains T, the number of cases. This is followed by T test case blocks.

Each test case contains two integers, R, C.

This is followed by R lines containing a string of length C. The j-th letter in the i-th row describes the state of the cell in year 0.

Each cell is either a

1. '.' which represents an unoccupied cell

2. '#' which represents a cell that cannot be occupied

3. A civilization represented by a lowercase letter ('a' - 'z')

 

Output (STDOUT):

For each test case, print the final grid after no expansion is possible. Apart from the notations used in the input, use '*' to denote that a battle is being waged in that particular cell. 

Print a blank line at the end of each case.

 

Constraints:

1 <= R, C <= 500

1 <= T <= 5

 

Sample Input:

5

3 5

#####

a...b

#####

3 4

####

a..b

####

3 3

#c#

a.b

#d#

3 3

#c#

...

a.b

3 5

.....

.#.#.

a...b

 

Sample Output:

#####

aa*bb

#####

 

####

aabb

####

 

#c#

a*b

#d#

 

#c#

acb

a*b

 

aa*bb

a#.#b

aa*bb

题意:就是很多个国家(国家用'a'-'z'表示),向周围(上下左右)扩张土地,而且扩张的速度是一样的,同时开始扩张,如果在同一个时间两个及两个以上的国家)扩张到同一个地方,那么就要发生战争,标记为 '*'。有'#'标记的地方不能扩张。
思路:因为扩张速度使一样的,是"横向"更新数据,所以可以想到用的方法是BFS,题目的突破口就是在如何判断这个地方是否需要发生战争
突破口:需要弄一个变量存储某个国家到这个点的时间。如果他要扩张的这个点不是   '.'  而是其他的国家(例如'a'),那么只需要判断它扩张到这点的时间是否和'a'扩张到这点的时间相同,如果相同则要发生战争(map[i][j]='*'),否则则不发生战争。
 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<queue>
 4 using namespace std;
 5 int T;
 6 char map[505][505];//表示[i][j]该点
 7 int flag[505][505];//表示第一个到[i][j]这个位子的时间
 8 int direction[4][2]={0,1,0,-1,1,0,-1,0};//4个方向 
 9 int R,C;
10 struct Node
11 {
12     int x,y,num;//x,y表示坐标,num表示第几个时间点到达。 
13     char s;//s表示字母 
14 };
15 void BFS()
16 {
17     memset(flag,0,sizeof(flag));
18     queue<Node>q;
19     for (int i=0;i<R;i++)
20     for (int j=0;j<C;j++)
21     {
22         if(map[i][j]>='a'&&map[i][j]<='z')//一开始把所有国家存储入队
23         q.push((Node){i,j,0,map[i][j]});//这一步可以看成
       //new了一个新的Node类的结构体Node.x=i;Node.y=j; Node.num=0; Node.s=map[i][j];————————①
24 } 25 while (!q.empty())//最开始是表示每个国家依次出栈,依次更新向四个方向扩张的情况,后面是表示扩张后的土地再向四周扩张的情况 26 { 27 Node t=q.front();//取栈定 28 q.pop();//出栈 29 if(map[t.x][t.y]=='*') continue;//因为可能是在某个(这里假设是'a'国家)国家当时扩张的时候该点没有被占领,但是后面更新的时候又发生了战争,那么该点就不属于'a'国家,而是发生战争,所以这点跳过,不能扩张 30 for(int i=0;i<4;i++) 31 { 32 int xx=t.x+direction[i][0]; 33 int yy=t.y+direction[i][1]; 34 if(xx<0||xx>=R||yy<0||yy>=C||map[xx][yy]=='*'||map[xx][yy]=='#')//“超出范围”或者“不能走”或者“发生了战争的地方” 35 { 36 continue; 37 } 38 if(map[xx][yy]=='.')//可以走,则改变那个点 ,入队 39 { 40 map[xx][yy]=t.s; 41 q.push((Node){xx,yy,t.num+1,map[xx][yy]});//Tip:写法和上方①处的解释一样 42 flag[xx][yy]=t.num+1;//因为是这个国家在上一个位子的扩张点所以是上一个位子的时间t.num+1 ————————————② 43 } 44 if(map[xx][yy]!=t.s&&flag[xx][yy]==t.num+1)//满足突破口,不同的国家在同一个时间段同一个地方相遇,则要发生战争
                                   //Tip:此处的t.num+1的解释和上面②的一样。
45 map[xx][yy]='*'; 46 } 47 } 48 } 49 int main() 50 { 51 while (scanf("%d",&T)!=EOF) 52 { 53 while (T--) 54 { 55 scanf("%d%d",&R,&C); 56 for (int i=0;i<R;i++) 57 scanf("%s",map[i]); 58 BFS(); 59 for (int i=0;i<R;i++) 60 printf("%s\n",map[i]); 61 } 62 } 63 return 0; 64 }

 如果有错的地方还请麻烦指出?。谢谢各位了。

转载于:https://www.cnblogs.com/bendandedaima/p/9287441.html

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值