caffe中的Accuracy+softmaxWithLoss

本文解析了Caffe框架中Accuracy的计算方式,特别是在AlexNet和CaffeNet等网络中的实现细节。介绍了如何通过最后一个全连接层(fc8)的输出进行预测及准确性评估。

转:http://blog.youkuaiyun.com/tina_ttl/article/details/51556984

今天才偶然发现,caffe在计算Accuravy时,利用的是最后一个全链接层的输出(不带有acitvation function),比如:alexnet的train_val.prototxt、caffenet的train_val.prototxt

下图是这两个网络训练配置文件(prototxt文件)计算Accuray的配置文件截图的截图(对于该部分,alexnet和caffenet是一致的)

  • 最后一个全连接层
layer {
  name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 1000 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } }
  • 计算Accuracy
layer {
  name: "accuracy" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy" include { phase: TEST } }

可以看到,caffe中计算Accuracy时,是通过比较最后一个全连接层(神经元个数=类别数、但没有加入activation function)的输出和数据集的labels来得到的,计算过程在AccuracyLayer中实现

之前一直非常困惑,计算accuracy应该使用计算得到的labels与数据集真正的labels去做计算,为什么caffe的accuracy要将fc8接入Accuray层呢?通过简单查看AccuracyLayer的说明才发现,原来,在AccuracyLayer内部,实现了“利用fc8的输出得到数据集的预测labels”(数值最大的那个值得idnex就是样本的类别),那么,再与输入的数据集真实lebels作对比,就实现了accuray的计算!

实际上,如果仅仅是做预测,利用fc8的输出就够了(输出值最大的那个位置即为输入的label),该输出表示了输入的样本属于每一类的可能性大小,但并不是概率值; 
如果为了使输出具有统计意义,需要加入softmax function,它只是使前面的全连接层的输出(fc8)具有了概率意义,并不改变这些输出之前的大小关系,因为softmax function本身就是增函数; 
为了利用误差反向传播,还需要构造loss function,需要利用softmax function的输出,即需要利用输入样本属于每一类的概率值;

注意:

    • 最后一个全连接层(fc8)的输出值位于区间[,],它并不是概率值

    • fc8后面接的SoftmaxWithLoss层做的工作分2步

      • 第一步:对fc8的输出计算softmax function(结果为概率值)
      • 第二步:利用求得的概率值计算Loss
      • caffe中的softmaxWithLoss其实是: 
      • softmaxWithLoss = Multinomial Logistic Loss Layer + Softmax Layer

        其中: 
        Multinomial Logistic Loss Layer 即为交叉熵代价函数 
        Softmax Layer其实就是指softmax function(全连接那一步在它前面的fc中实现)

        示意图如下: 
        这里写图片描述

        应该注意,这里的Softmax Layer与机器学习中提到的softmax regression有一个小小的不同:它没有将前面的全连接层考虑在内,也就是说,它将softmax regression进行了分解:

        softmax regression = 全连接层 + softmax layer (即softmax function)


        另外,softmax function那个过程,按照如下方式绘制展示可能会更加明白 
        这里写图片描述

         
         

转载于:https://www.cnblogs.com/JZ-Ser/p/7118632.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值