Codeforces Round #292 (Div. 1) - B. Drazil and Tiles

文章探讨使用1×2瓷砖覆盖特定网格的问题,并提出了判断覆盖方案是否唯一的方法。通过构建网格并利用拓扑排序、度数矩阵等数据结构,实现了在O(m*n)时间内构造解决方案或判断其唯一性。详细步骤包括初始化度数矩阵、构建队列以处理度数为1的点、更新相邻点的度数直至完成覆盖或发现不存在唯一解的情况。
B. Drazil and Tiles
 

Drazil created a following problem about putting 1 × 2 tiles into an n × m grid:

"There is a grid with some cells that are empty and some cells that are occupied. You should use 1 × 2 tiles to cover all empty cells and no two tiles should cover each other. And you should print a solution about how to do it."

But Drazil doesn't like to write special checking program for this task. His friend, Varda advised him: "how about asking contestant only to print the solution when it exists and it is unique? Otherwise contestant may print 'Not unique' ".

Drazil found that the constraints for this task may be much larger than for the original task!

Can you solve this new problem?

Note that you should print 'Not unique' either when there exists no solution or when there exists several different solutions for the original task.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 2000).

The following n lines describe the grid rows. Character '.' denotes an empty cell, and the character '*' denotes a cell that is occupied.

Output

If there is no solution or the solution is not unique, you should print the string "Not unique".

Otherwise you should print how to cover all empty cells with 1 × 2 tiles. Use characters "<>" to denote horizontal tiles and characters "^v" to denote vertical tiles. Refer to the sample test for the output format example.

Sample test(s)
Input
3 3
...
.*.
...
Output
Not unique
Input
4 4
..**
*...
*.**
....
Output
<>**
*^<>
*v**
<><>
Input
2 4
*..*
....
Output
*<>*
<><>
Input
1 1
.
Output
Not unique
Input
1 1
*
Output
*
Note

In the first case, there are indeed two solutions:


<>^
^*v
v<>

and


^<>
v*^
<>v

so the answer is "Not unique".


 

 

题意:用一些1*2的瓷砖覆盖m*n的网格(有障碍),问方案是否唯一,是则输出覆盖的方案。(1 ≤ n, m ≤ 2000).

 

这题像极了某次cf的一道题(判断网格中是否有环),不过那题数据比较小,直接暴力的拓扑排序即可。

 

而这题为了在o(m*n)内构造出解,需要维护一个保存所有度为1的点的队列,以及一个保存所有点的度数的数组,每次将一个点出队,同时将唯一的那个与该点相邻的点删掉,然后更改删掉的点的相邻的点的度数(常数时间),度为1的话即入队。

 

当发现队列空的时候,表明找不到度为1的点了,这时要不是全部覆盖完了,就是存在环或者单独的点(这种情况显然是无解或者多解),再循环判断一遍即可。


 

 

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <queue>
 4 using namespace std;
 5 #define MAXN 2010
 6 
 7 struct Point
 8 {
 9     int x,y;
10 };
11 char G[MAXN][MAXN];
12 int degree[MAXN][MAXN]={0};
13 int m,n;
14 bool isin(int x,int y)
15 {
16     return x>=0 && x<m && y>=0 && y<n;
17 }
18 
19 int dx[]={1,0,-1, 0};
20 int dy[]={0,1, 0,-1};
21 int getDegree(int x,int y)
22 {
23     if(G[x][y]=='*')
24         return 0;
25     int sum=0;
26     for(int i=0;i<4;i++)
27     {
28         int newx=x+dx[i];
29         int newy=y+dy[i];
30         sum+=(isin(newx,newy) && G[newx][newy]!='*');
31     }
32     return sum;
33 }
34 
35 int main()
36 {
37     cin>>m>>n;
38     for(int i=0;i<m;i++)
39         scanf("%s",G[i]);
40 
41     queue<Point> Q;
42     for(int i=0;i<m;i++)
43         for(int j=0;j<n;j++)
44         {
45             degree[i][j]=getDegree(i,j);
46             if(degree[i][j] == 1)
47                 Q.push(Point{i,j});
48         }
49 
50 //    int dx[]={1,0,-1, 0};
51 //    int dy[]={0,1, 0,-1};
52     char oldtype[]={'^','<','v','>'};
53     char newtype[]={'v','>','^','<'};
54     while(!Q.empty())
55     {
56         Point x=Q.front();
57         Q.pop();
58         degree[x.x][x.y]=0;
59         for(int i=0;i<4;i++)
60         {
61             int newx=x.x+dx[i];
62             int newy=x.y+dy[i];
63             if(isin(newx, newy) && degree[newx][newy])
64             {
65                 degree[newx][newy]=0;
66                 G[x.x][x.y]=oldtype[i];
67                 G[newx][newy]=newtype[i];
68                 // 更新与(newx, newy)相邻的点的度数
69                 for(int j=0;j<4;j++)
70                 {
71                     int curx=newx+dx[j];
72                     int cury=newy+dy[j];
73                     if(isin(curx, cury) && degree[curx][cury])
74                     {
75                         degree[curx][cury]--;
76                         if(degree[curx][cury]==1)
77                             Q.push(Point{curx, cury});
78                     }
79                 }
80                 break;
81             }
82         }
83     }
84 
85     for(int i=0;i<m;i++)
86         for(int j=0;j<n;j++)
87         {
88             if(G[i][j]=='.')
89             {
90                 puts("Not unique");
91                 return 0;
92             }
93         }
94 
95     for(int i=0;i<m;i++)
96         puts(G[i]);
97 
98     return 0;
99 }

 

转载于:https://www.cnblogs.com/oneshot/p/4295714.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值