Fliptile POJ - 3279

本文介绍了一种通过最少步骤将网格中所有方块颜色统一为白色的算法。该算法适用于一个由黑白方块组成的M×N网格,每次操作会翻转目标方块及其相邻方块的颜色。文章提供了一个C++实现示例,包括输入输出样例。

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M× N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers: M and N 
Lines 2.. M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1.. M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
#include<iostream>
#include<algorithm>
using namespace std;
const int dx[5] = { -1,0,0,0,1 };
const int dy[5] = { 0,-1,0,1,0 };
int M, N;
int tile[20][20];
int opt[20][20];//保存最优解
int flip[20][20];//保存中间结果
//查询(x,y)的颜色
int get(int x, int y)
{
    int c = tile[x][y];
    for (int d = 0; d < 5; d++)
    {
        int x2 = x + dx[d], y2 = y + dy[d];
        if (x2 >= 0 && x2 < M&&y2 >= 0 && y2 < N)
            c += flip[x2][y2];
    }
    return c % 2;
}
int cal()
{
    for(int i=1;i<M;i++)//之前枚举第一行的状态了,所以从第二行开始
        for (int j = 0; j < N; j++)
        {
            if (get(i - 1, j) != 0)
                flip[i][j] = 1;//反转次数加1
        }
    for (int j = 0; j < N; j++)//检查最后一行是否存在仍不为白色的情况
        if (get(M - 1, j) != 0)
            return -1;
    int ans = 0;
    for (int i = 0; i < M; i++)//求反转次数的总和
        for (int j = 0; j < N; j++)
            ans += flip[i][j];
    return ans;
}
void solve()
{
    int ans = -1;
    for (int i = 0; i < 1 << N; i++)//进行2^N次循环
    {
        memset(flip, 0, sizeof(flip));
        for (int j = 0; j < N; j++)//枚举第一行的所有反转情况
            flip[0][N - j - 1] = i >> j & 1;//以0000 0001 0010 0011这个规律
        int num = cal();
        if (num >= 0 && (ans < 0 || ans>num))
        {
            ans = num;
            memcpy(opt, flip, sizeof(flip));
        }
    }
    if (ans < 0)
        cout << "IMPOSSIBLE\n";
    else {
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < N; j++) {
                cout << opt[i][j] << (j + 1 == N ? '\n' : ' ');
            }
        }
    }
}
int main()
{
    while (cin >> M >> N)
    {
        memset(tile, 0, sizeof(tile));
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                cin >> tile[i][j];
        solve();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/CuteAbacus/p/9492121.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值