HDU 1874 畅通工程续 戳我直达
题意:求s到t的最短路径。最简单的最短路径题。
做法:Dijkstra 或 floyd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#include <bits/stdc++.h>
#define scf0(a) scanf("%s",&a)
#define scf1(a) scanf("%d",&a)
#define scf2(a,b) scanf("%d%d",&a,&b)
#define scf3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define MEM(a,b) memset(a,b,sizeof(a))
#define pii pair<int,int>
#define pdd pair<double,double>
#define LL long long
using
namespace
std;
const
int
INF = 0x3f3f3f3f;
const
double
eps = 1e-8;
const
int
maxn = 200 + 10;
int
mp[maxn][maxn];
int
n, m, s, t, u, v, w;
int
Dijkstra(
int
s,
int
t) {
//初始化
int
dist[maxn];
bool
vis[maxn];
MEM(vis,
false
);
for
(
int
i = 0; i < n; i++) dist[i] = mp[s][i];
dist[s] = 0;
vis[s] =
true
;
//循环n - 1次
for
(
int
j = 0; j < n - 1; j++) {
//初始化
int
minn = INF, pos;
//找最小点
for
(
int
i = 0; i < n; i++) {
if
(vis[i])
continue
;
if
(dist[i] < minn) pos = i, minn = dist[i];
}
vis[pos] =
true
;
//更新最短路径
for
(
int
i = 0; i < n; i++) {
if
(vis[i])
continue
;
dist[i] = min(dist[i], dist[pos] + mp[pos][i]);
}
}
return
dist[t] < INF ? dist[t] : -1;
}
int
main() {
while
(~scf2(n, m)) {
MEM(mp, INF);
for
(
int
i = 0; i < m; i++) {
scf3(u, v, w);
if
(w < mp[u][v]) mp[u][v] = mp[v][u] = w;
//输入的小坑...两点之间可能不止两条路线
}
scf2(s, t);
printf
(
"%d\n"
, Dijkstra(s, t) );
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
#include <bits/stdc++.h>
#define scf0(a) scanf("%s",&a)
#define scf1(a) scanf("%d",&a)
#define scf2(a,b) scanf("%d%d",&a,&b)
#define scf3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define MEM(a,b) memset(a,b,sizeof(a))
#define pii pair<int,int>
#define pdd pair<double,double>
#define LL long long
using
namespace
std;
const
int
INF = 0x3f3f3f3f;
const
double
eps = 1e-8;
const
int
maxn = 200 + 10;
int
mp[maxn][maxn];
int
n, m, s, t, u, v, w;
int
floyd(
int
s,
int
t)
//无fuck说,不想懂
{
for
(
int
k=0;k<n;k++)
for
(
int
i=0;i<n;i++)
for
(
int
j=0;j<n;j++)
mp[i][j]=mp[j][i]=min(mp[i][j],mp[i][k]+mp[k][j]);
return
mp[s][t] < INF ? mp[s][t] : -1;
}
int
main() {
while
(~scf2(n, m)) {
MEM(mp, INF);
for
(
int
i = 0; i < m; i++) {
scf3(u, v, w);
if
(w < mp[u][v]) mp[u][v] = mp[v][u] = w;
//输入的小坑...两点之间可能不止两条路线
}
scf2(s, t);
if
(s == t)
puts
(
"0"
);
//相同始终点,floyd最终得到的0
else
printf
(
"%d\n"
, floyd(s, t) );
}
}
|