m=n^n;两边同取对数,得到,log10(m)=n*log10(n);再得到,m=10^(n*log10(n));
然后,对于10的整数次幂,第一位是1,所以,第一位数取决于n*log10(n)的小数部分
Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13967 Accepted Submission(s): 5339Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Author
Ignatius.L
#include <stdio.h> #include <math.h> int main() { double test; double a; double c; __int64 b; __int64 d; int n; scanf("%d",&n); while(n--) { scanf("%lf",&test); a=test*log10(test); b=(__int64)a; c=a-b; d=(__int64)(pow(10,c)); printf("%I64d\n",d); } return 0; }