hdu3410 单调队列

Passing the Message

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 547    Accepted Submission(s): 344


Problem Description
What a sunny day! Let’s go picnic and have barbecue! Today, all kids in “Sun Flower” kindergarten are prepared to have an excursion. Before kicking off, teacher Liu tells them to stand in a row. Teacher Liu has an important message to announce, but she doesn’t want to tell them directly. She just wants the message to spread among the kids by one telling another. As you know, kids may not retell the message exactly the same as what they was told, so teacher Liu wants to see how many versions of message will come out at last. With the result, she can evaluate the communication skills of those kids.
Because all kids have different height, Teacher Liu set some message passing rules as below:

1.She tells the message to the tallest kid.

2.Every kid who gets the message must retell the message to his “left messenger” and “right messenger”.

3.A kid’s “left messenger” is the kid’s tallest “left follower”. 

4.A kid’s “left follower” is another kid who is on his left, shorter than him, and can be seen by him. Of course, a kid may have more than one “left follower”. 

5.When a kid looks left, he can only see as far as the nearest kid who is taller than him.

The definition of “right messenger” is similar to the definition of “left messenger” except all words “left” should be replaced by words “right”. 

For example, suppose the height of all kids in the row is 4, 1, 6, 3, 5, 2 (in left to right order). In this situation , teacher Liu tells the message to the 3rd kid, then the 3rd kid passes the message to the 1st kid who is his “left messenger” and the 5th kid who is his “right messenger”, and then the 1st kid tells the 2nd kid as well as the 5th kid tells the 4th kid and the 6th kid. 
Your task is just to figure out the message passing route.
 

Input
The first line contains an integer T indicating the number of test cases, and then T test cases follows.
Each test case consists of two lines. The first line is an integer N (0< N <= 50000) which represents the number of kids. The second line lists the height of all kids, in left to right order. It is guaranteed that every kid’s height is unique and less than 2^31 – 1 .
 

Output
For each test case, print “Case t:” at first ( t is the case No. starting from 1 ). Then print N lines. The ith line contains two integers which indicate the position of the ith (i starts form 1 ) kid’s “left messenger” and “right messenger”. If a kid has no “left messenger” or “right messenger”, print ‘0’ instead. (The position of the leftmost kid is 1, and the position of the rightmost kid is N)
 

Sample Input
2
5
5 2 4 3 1
5
2 1 4 3 5
 

Sample Output
Case 1:
0 3
0 0
2 4
0 5
0 0
Case 2:
0 2
0 0
1 4
0 0
3 0
 
题意:
n个数,对于每一个数找到它左边的第一个比他大和他之间的最大值,和他右边的第一个比他大的和他之间的最大值。
比如 5 2 4 3 1,  5左边没有值那就是0,  2和5之间没有值也是0,  4左边就是2 其他起个也是类似。
右边和左边的一样。
 
思路:
维护一个单调递减的队列。假设这里是左边,如果当前的值比队列里面的值小,那么当前这个点肯定是没有左边的值;如果当前的值比队列的大,那么队列尾部的值就是当前点的左值,同时不断将队列里面的值删除,直到队列当前的值大于当前点的值。 右边也是如此。
 
/*
 * Author:  sweat123
 * Created Time:  2016/7/11 20:23:02
 * File Name: main.cpp
 */
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<time.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1<<30
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define key_value ch[ch[root][1]][0]
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = 50010;
struct node{
    int id; 
    int val;    
}q[MAXN];
int a[MAXN],n,cnt;
int l[MAXN],r[MAXN];
int main(){
    int t,ff = 0;
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        for(int i = 1; i <= n; i++){
            scanf("%d",&a[i]);
        }   
        cnt = 0;
        for(int i = 1; i <= n; i++){
            if(cnt == 0){
                l[i] = 0;
                q[++cnt].val = a[i];
                q[cnt].id = i;   
             } else{
                if(a[i] < q[cnt].val){
                    l[i] = 0;
                    q[++cnt].val = a[i];
                    q[cnt].id = i;
                } else {
                    while(cnt && q[cnt].val < a[i]){
                        cnt --;
                    }   
                    l[i] = q[cnt+1].id;
                    q[++cnt].val = a[i];
                    q[cnt].id = i;
                }
             }
        }
        cnt = 0;
        for(int i = n; i >= 1; i--){
            if(cnt == 0){
                r[i] = 0;
                q[++cnt].val = a[i];
                q[cnt].id = i;   
             } else{
                if(a[i] < q[cnt].val){
                    r[i] = 0;
                    q[++cnt].val = a[i];
                    q[cnt].id = i;   
                } else{
                    while(cnt && a[i] > q[cnt].val){
                        cnt --;   
                    }
                    r[i] = q[cnt+1].id;
                    q[++cnt].val = a[i];
                    q[cnt].id = i;
                }
             }
        }
        printf("Case %d:\n",++ff);
        for(int i = 1; i <= n; i++){
            printf("%d %d\n",l[i],r[i]);
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/sweat123/p/5661579.html

对于HDU4546问题,还可以使用优先队列(Priority Queue)来解决。以下是使用优先队列的解法思路: 1. 首先,将数组a进行排序,以便后续处理。 2. 创建一个优先队列(最小堆),用于存储组合之和的候选值。 3. 初始化优先队列,将初始情况(即前0个数的组合之和)加入队列。 4. 开始从1到n遍历数组a的元素,对于每个元素a[i],将当前队列中的所有候选值取出,分别加上a[i],然后再将加和的结果作为新的候选值加入队列。 5. 重复步骤4直到遍历完所有元素。 6. 当队列的大小超过k时,将队列中的最小值弹出。 7. 最后,队列中的所有候选值之和即为前k小的组合之和。 以下是使用优先队列解决HDU4546问题的代码示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sort(a.begin(), a.end()); // 对数组a进行排序 priority_queue<long long, vector<long long>, greater<long long>> pq; // 最小堆 pq.push(0); // 初始情况,前0个数的组合之和为0 for (int i = 0; i < n; i++) { long long num = pq.top(); // 取出当前队列中的最小值 pq.pop(); for (int j = i + 1; j <= n; j++) { pq.push(num + a[i]); // 将所有加和结果作为新的候选值加入队列 num += a[i]; } if (pq.size() > k) { pq.pop(); // 当队列大小超过k时,弹出最小值 } } long long sum = 0; while (!pq.empty()) { sum += pq.top(); // 求队列中所有候选值之和 pq.pop(); } cout << sum << endl; return 0; } ``` 使用优先队列的方法可以有效地找到前k小的组合之和,时间复杂度为O(nklog(k))。希望这个解法对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值