A strange lift

博客介绍了一个楼层按钮操作问题的输入输出规则。输入包含多个测试用例,每个用例两行,第一行有三个整数描述相关信息,第二行有N个整数,以0结束输入。输出为从A层到B层最少按按钮次数,无法到达则输出 -1。
There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist. 
Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"? 

Input

The input consists of several test cases.,Each test case contains two lines. 
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn. 
A single 0 indicate the end of the input.

Output

For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".

Sample Input

5 1 5
3 3 1 2 5
0

Sample Output

3
题意:有一层楼有一架奇怪的电梯,这坐电梯在每层楼安排按钮,或上或下,并且上或下的楼层数是规定好了的为k[i],电梯的编号范围为1-n,每层电梯上或下规定的楼层数由数组k给出;现已知楼层数,起始楼层,目的楼层,以及数组k[i],求从起始楼层到目的楼层需要按几次电梯按钮。由于此处相当于求最优解,所以用广搜算法,而非深搜算法。
#include<cstdio>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
int n,s,t,flag,ans;
int k[210];
typedef pair<int,int>P;

bool vis[210];
int main()
{
    while(~scanf("%d",&n)&&n!=0){
        scanf("%d%d",&s,&t);
        flag=0;
        ans=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&k[i]);
            vis[i]=false;
        }
        queue<P>q;
        q.push(P(s,0));
        vis[s]=true;
        while(!q.empty()){
            P top=q.front();
            q.pop();
            int a=top.first,b=top.second;
            if(a==t){
                flag=1;
                ans=b;
                break;
            }
            int aa,bb;
            aa=a+k[a];
            bb=a-k[a];
            if(aa>=1&&aa<=n&&!vis[aa]){
                q.push(P(aa,b+1));
                vis[aa]=true;
            }
            if(bb>=1&&bb<=n&&!vis[bb]){
                q.push(P(bb,b+1));
                vis[bb]=true;
            }
        }
        if(flag==1)
            printf("%d\n",ans);
        else
            printf("-1\n");
    }
    return 0;
}
 将bfs单独写在bfs()函数里面:
#include<cstdio>
#include<queue>
#include<cstring>
#include<iostream>
using namespace std;
typedef pair<int,int>P;
int n,A,B,k[210];
int vis[210];
int bfs(int x)
{
    queue<P>q;//为了便于记录总共按电梯的次数,定义一个queue<pair<int,int>>的队列,其中P(x,y)的表示的是到达x层,总共按了电梯y次
    q.push(P(x,0));
    vis[x]=1;
    int ans;
    while(!q.empty()){
        P tmp=q.front();
        q.pop();
        if(tmp.first==B){
            ans=tmp.second;
            return ans;
        }
        int a=tmp.first;
        if(a-k[a]>=1&&a-k[a]<=n&&!vis[a-k[a]]){//注意这里a-k[a]等不是以函数形参x来判断,而是用的队首元素a=tmp.first
            q.push(P(a-k[a],tmp.second+1));
            vis[a-k[a]]=1;
        }
        if(a+k[a]>=1&&a+k[a]<=n&&!vis[a+k[a]]){
            q.push(P(a+k[a],tmp.second+1));
            vis[a+k[a]]=1;
        }
    }
    return -1;
}
int main()
{
    while(~scanf("%d",&n)&&n){
        scanf("%d%d",&A,&B);
        for(int i=1;i<=n;i++){
            scanf("%d",&k[i]);
        }
        memset(vis,0,sizeof(vis));
        printf("%d\n",bfs(A));
    }
    return 0;
}
 
 

 

 

转载于:https://www.cnblogs.com/LJHAHA/p/11164599.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值