B - Guess a number!

本文介绍了一款名为“猜数字!”的电视节目中的算法挑战。参与者通过提问来猜测主持人所想的数字,文章详细解释了如何根据一系列提问及其答案找到符合条件的整数或判断是否可能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem description

A TV show called "Guess a number!" is gathering popularity. The whole Berland, the old and the young, are watching the show.

The rules are simple. The host thinks of an integer y and the participants guess it by asking questions to the host. There are four types of acceptable questions:

  • Is it true that y is strictly larger than number x?
  • Is it true that y is strictly smaller than number x?
  • Is it true that y is larger than or equal to number x?
  • Is it true that y is smaller than or equal to number x?

On each question the host answers truthfully, "yes" or "no".

Given the sequence of questions and answers, find any integer value of y that meets the criteria of all answers. If there isn't such value, print "Impossible".

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 10000) — the number of questions (and answers). Next n lines each contain one question and one answer to it. The format of each line is like that: "sign x answer", where the signis:

  • ">" (for the first type queries),
  • "<" (for the second type queries),
  • ">=" (for the third type queries),
  • "<=" (for the fourth type queries).

All values of x are integer and meet the inequation  - 109 ≤ x ≤ 109. The answer is an English letter "Y" (for "yes") or "N" (for "no").

Consequtive elements in lines are separated by a single space.

Output

Print any of such integers y, that the answers to all the queries are correct. The printed number y must meet the inequation  - 2·109 ≤ y ≤ 2·109. If there are many answers, print any of them. If such value doesn't exist, print word "Impossible" (without the quotes).

Examples

Input

4
>= 1 Y
< 3 N
<= -3 N
> 55 N

Output

17

Input

2
> 100 Y
< -100 Y

Output

Impossible
解题思路:题意比较简单,就是找出符合要求的区间,然后输出其中任意一个值。如果不满足构成区间的条件,则输出"Impossible"。
AC代码:
 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int INF = 2e9;
 4 int main(){
 5     int n,x,left=-INF,right=INF;char ch;string eq;//初始值区间满足-2*10^9<=[left,right]<=2*10^9
 6     cin>>n;
 7     while(n--){
 8         getchar();
 9         cin>>eq>>x>>ch;
10         if(ch=='N'){//修改其值
11             if(eq==">=")eq="<";
12             else if(eq=="<=")eq=">";
13             else if(eq==">")eq="<=";
14             else eq=">=";
15         }
16         if(eq=="<")right=min(right,x-1);//取右端点的最小值
17         else if(eq=="<=")right=min(right,x);
18         else if(eq==">")left=max(left,x+1);//取左端点的最大值
19         else left=max(left,x);
20     }
21     if(left>right)cout<<"Impossible"<<endl;//不满足条件
22     else cout<<left<<endl;//直接输出左端点值(任意值)
23     return 0;
24 }

转载于:https://www.cnblogs.com/acgoto/p/9142504.html

subroutine FGMRES(A, IA, JA, RHS, N, nzmax, COMPUTED_SOLUTION) implicit none integer N integer SIZE parameter (SIZE=128) integer, intent(in) :: nzmax !--------------------------------------------------------------------------- ! Define arrays for the upper triangle of the coefficient matrix ! Compressed sparse row storage is used for sparse representation !--------------------------------------------------------------------------- integer IA(N+1) integer JA(nzmax) real*8 A(nzmax) !--------------------------------------------------------------------------- ! Allocate storage for the ?par parameters and the solution/rhs/residual vectors !--------------------------------------------------------------------------- integer IPAR(SIZE) real*8 DPAR(SIZE), TMP(N*(2*150+1)+(150*(150+9))/2+1) real*8 RHS(N) !, B(N) real*8 COMPUTED_SOLUTION(N) ! real*8 RESIDUAL(N) !--------------------------------------------------------------------------- ! Some additional variables to use with the RCI (P)FGMRES solver !--------------------------------------------------------------------------- integer ITERCOUNT, EXPECTED_ITERCOUNT parameter (EXPECTED_ITERCOUNT=233) integer RCI_REQUEST, I real*8 DVAR !--------------------------------------------------------------------------- ! An external BLAS function is taken from MKL BLAS to use ! with the RCI (P)FGMRES solver ! Save the right-hand side in vector B for future use !--------------------------------------------------------------------------- ! call DCOPY(N, RHS, 1, B, 1) !--------------------------------------------------------------------------- ! Initialize the initial guess !--------------------------------------------------------------------------- do I=1,N COMPUTED_SOLUTION(I)=0. END DO !--------------------------------------------------------------------------- ! Initialize the solver !--------------------------------------------------------------------------- CALL DFGMRES_INIT(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR, DPAR, TMP) IF (RCI_REQUEST.NE.0) GOTO 999 !--------------------------------------------------------------------------- ! Set the desired parameters: ! do the restart after 2 iterations: IPAR(15)=2 ! LOGICAL parameters: ! do not do the stopping test for the maximal number of iterations: IPAR(8)=0 ! do the Preconditioned iterations of FGMRES method: IPAR(11)=1 ! DOUBLE PRECISION parameters ! set the relative tolerance to 1.0D-3 instead of default value 1.0D-6: DPAR(1)=1.0D-3 !--------------------------------------------------------------------------- IPAR(9)=1 IPAR(10)=0 IPAR(12)=1 DPAR(1)=1.0D-6 !--------------------------------------------------------------------------- ! Check the correctness and consistency of the newly set parameters !--------------------------------------------------------------------------- CALL DFGMRES_CHECK(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR, DPAR, TMP) IF (RCI_REQUEST.NE.0) GOTO 999 !--------------------------------------------------------------------------- ! Compute the solution by RCI (P)FGMRES solver with preconditioning ! Reverse Communication starts here !--------------------------------------------------------------------------- 1 CALL DFGMRES(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR, DPAR, TMP) !--------------------------------------------------------------------------- ! If RCI_REQUEST=0, then the solution was found with the required precision !--------------------------------------------------------------------------- IF (RCI_REQUEST.EQ.0) GOTO 3 !--------------------------------------------------------------------------- ! If RCI_REQUEST=1, then compute the vector A*TMP(IPAR(22)) ! and put the result in vector TMP(IPAR(23)) !--------------------------------------------------------------------------- IF (RCI_REQUEST.EQ.1) THEN CALL MKL_DCSRGEMV('N',N, A, IA, JA, TMP(IPAR(22)), TMP(IPAR(23))) GOTO 1 ! END IF !!--------------------------------------------------------------------------- !! If RCI_request=2, then do the user-defined stopping test !! The residual stopping test for the computed solution is performed here !!--------------------------------------------------------------------------- !! NOTE: from this point vector B(N) is no longer containing the right-hand !! side of the problem! It contains the current FGMRES approximation to the !! solution. If you need to keep the right-hand side, save it in some other !! vector before the call to DFGMRES routine. Here we saved it in vector !! RHS(N). The vector B is used instead of RHS to preserve the original !! right-hand side of the problem and guarantee the proper restart of FGMRES !! method. Vector B will be altered when computing the residual stopping !! criterion! !!--------------------------------------------------------------------------- ! IF (RCI_REQUEST.EQ.2) THEN !! Request to the DFGMRES_GET routine to put the solution into B(N) via IPAR(13) ! IPAR(13)=1 !! Get the current FGMRES solution in the vector B(N) ! CALL DFGMRES_GET(N, COMPUTED_SOLUTION, B, RCI_REQUEST, IPAR, DPAR, TMP, ITERCOUNT) !! Compute the current true residual via MKL (Sparse) BLAS routines ! CALL MKL_DCSRGEMV('N', N, A, IA, JA, B, RESIDUAL) ! CALL DAXPY(N, -1.0D0, RHS, 1, RESIDUAL, 1) ! DVAR=DNRM2(N, RESIDUAL, 1) ! IF (DVAR.LT.1.0E-3) THEN ! GOTO 3 ! ELSE ! GOTO 1 ! END IF !!--------------------------------------------------------------------------- !! If RCI_REQUEST=anything else, then DFGMRES subroutine failed !! to compute the solution vector: COMPUTED_SOLUTION(N) !!--------------------------------------------------------------------------- ELSE ! call data WRITE(*,*) 'This example FAILED as the solver has returned the ERROR code',RCI_REQUEST pause GOTO 999 END IF !--------------------------------------------------------------------------- ! Reverse Communication ends here ! Get the current iteration number and the FGMRES solution (DO NOT FORGET to ! call DFGMRES_GET routine as COMPUTED_SOLUTION is still containing ! the initial guess!) !--------------------------------------------------------------------------- 3 CALL DFGMRES_GET(N, COMPUTED_SOLUTION, RHS, RCI_REQUEST, IPAR, DPAR, TMP, ITERCOUNT) IF (ITERCOUNT<=EXPECTED_ITERCOUNT) THEN ! WRITE(*,*) 'This example has successfully PASSED through all steps of computation!' ! print*,'number of iteration',ITERCOUNT RETURN ELSE WRITE(*,*) 'This example have FAILED as the number of iterations differs from the expected number of iterations' pause STOP 15 END IF 999 WRITE(*,*) 'This example FAILED as the solver has returned the ERROR code',RCI_REQUEST CALL MKL_FREE_BUFFERS STOP 16 END SUBROUTINE FGMRES详细解释下这段代码,中文注释
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值