Almost Arithmetic Progression

本文介绍了一个算法问题,即通过改变序列中的元素(增加或减少1)来构建一个算术序列。探讨了如何实现这一目标,并提供了一个具体的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp likes arithmetic progressions. A sequence [a1,a2,,an][a1,a2,…,an] is called an arithmetic progression if for each ii (1i<n1≤i<n) the value ai+1aiai+1−ai is the same. For example, the sequences [42][42], [5,5,5][5,5,5], [2,11,20,29][2,11,20,29] and [3,2,1,0][3,2,1,0] are arithmetic progressions, but [1,0,1][1,0,1], [1,3,9][1,3,9] and [2,3,1][2,3,1] are not.

It follows from the definition that any sequence of length one or two is an arithmetic progression.

Polycarp found some sequence of positive integers [b1,b2,,bn][b1,b2,…,bn]. He agrees to change each element by at most one. In the other words, for each element there are exactly three options: an element can be decreased by 11, an element can be increased by 11, an element can be left unchanged.

Determine a minimum possible number of elements in bb which can be changed (by exactly one), so that the sequence bb becomes an arithmetic progression, or report that it is impossible.

It is possible that the resulting sequence contains element equals 00.

Input

The first line contains a single integer n(1n100000)(1≤n≤100000) — the number of elements in bb.

The second line contains a sequence b1,b2,,bnb1,b2,…,bn (1bi109)(1≤bi≤109).

Output

If it is impossible to make an arithmetic progression with described operations, print -1. In the other case, print non-negative integer — the minimum number of elements to change to make the given sequence becomes an arithmetic progression. The only allowed operation is to add/to subtract one from an element (can't use operation twice to the same position).

Examples
input
Copy
4
24 21 14 10
output
Copy
3
input
Copy
2
500 500
output
Copy
0
input
Copy
3
14 5 1
output
Copy
-1
input
Copy
5
1 3 6 9 12
output
Copy
1
Note

In the first example Polycarp should increase the first number on 11, decrease the second number on 11, increase the third number on 11, and the fourth number should left unchanged. So, after Polycarp changed three elements by one, his sequence became equals to [25,20,15,10][25,20,15,10], which is an arithmetic progression.

In the second example Polycarp should not change anything, because his sequence is an arithmetic progression.

In the third example it is impossible to make an arithmetic progression.

In the fourth example Polycarp should change only the first element, he should decrease it on one. After that his sequence will looks like [0,3,6,9,12][0,3,6,9,12], which is an arithmetic progression.

 

枚举 a[1]、a[2]的所有情况,一但a[1]-a[2]确定,则所有数之间的差确定,看修改元素是否能达到这种可能。如果可以,维护一个最小值。

#include <iostream>
#include <algorithm>
#include <bits/stdc++.h>
#define maxn 100005
using namespace std;
typedef long long ll;
int main()
{
    int n,i,j,k;
    int a[maxn]={0};
   int b[maxn]={0};
    scanf("%d",&n);

    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    if(n==2||n==1)
    {
        printf("0\n");
        return 0;
    }
    int minum=10000000;
    int flag=0;
    for(i=-1;i<=1;i++)
    {
        for(j=-1;j<=1;j++)
        {
            int cnt=abs(i)+abs(j);
            for(k=1;k<=n;k++)
            {
                b[k]=a[k];
            }
            b[1]+=i;
            b[2]+=j;
            int x=b[1]-b[2];
            for(k=2;k<=n-1;k++)
            {
                if(b[k]-(b[k+1]+1)==x)
                {
                    b[k+1]+=1;
                    cnt++;
                }
                else if(b[k]-b[k+1]==x)
                {

                }
                else if(b[k]-(b[k+1]-1)==x)
                {
                    cnt++;
                    b[k+1]-=1;
                }
                else
                {
                    break;
                }
                if(k==n-1)
                {minum=min(minum,cnt);flag=1;}
            }
        }
    }
    if(flag) printf("%d\n",minum);
    else printf("-1\n");
    return 0;
}

  

转载于:https://www.cnblogs.com/zyf3855923/p/9039766.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值