(简单) POJ 3159 Candies,Dijkstra+差分约束。

本文讨论了一个经典的差分约束问题——幼儿园糖果分配问题。该问题要求在满足特定条件的情况下,尽可能增大两个孩子之间的糖果数量差异。文章提供了一段使用C++实现的SPFA算法代码,并详细解释了其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Description

  During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher brought the kids of flymouse’s class a large bag of candies and had flymouse distribute them. All the kids loved candies very much and often compared the numbers of candies they got with others. A kid A could had the idea that though it might be the case that another kid B was better than him in some aspect and therefore had a reason for deserving more candies than he did, he should never get a certain number of candies fewer than B did no matter how many candies he actually got, otherwise he would feel dissatisfied and go to the head-teacher to complain about flymouse’s biased distribution.

  snoopy shared class with flymouse at that time. flymouse always compared the number of his candies with that of snoopy’s. He wanted to make the difference between the numbers as large as possible while keeping every kid satisfied. Now he had just got another bag of candies from the head-teacher, what was the largest difference he could make out of it?

 

  题目就是差分约束问题,但是这个题卡SPFA。。。。。。

 

代码如下:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
    
using namespace std;

const int MaxN=30004;
const int MaxM=150004;
const int INF=10e9+7;

struct Node
{
    int id,val;

    Node(int _id=0,int _val=0):id(_id),val(_val) {}

    bool operator < (const Node & a) const
    {
        return val>a.val;
    }
};

struct Edge
{
    int to,next,cost;
};

Edge E[MaxM];
int head[MaxN],Ecou;
int vis[MaxN];

void Dijkstra(int lowcost[],int N,int start)
{
    priority_queue <Node> que;
    Node temp;
    int u,v,c;

    for(int i=1;i<=N;++i)
    {
        lowcost[i]=INF;
        vis[i]=0;
    }

    que.push(Node(start,0));
    lowcost[start]=0;

    while(!que.empty())
    {
        temp=que.top();
        que.pop();

        u=temp.id;

        if(vis[u])
            continue;

        vis[u]=1;

        for(int i=head[u];i!=-1;i=E[i].next)
        {
            v=E[i].to;
            c=E[i].cost;

            if(lowcost[v]>lowcost[u]+c && !vis[v])
            {
                lowcost[v]=lowcost[u]+c;
                que.push(Node(v,lowcost[v]));
            }
        }
    }
}

void init(int N)
{
    for(int i=1;i<=N;++i)
        head[i]=-1;
    Ecou=0;
}

void addEdge(int u,int v,int c)
{
    E[Ecou].to=v;
    E[Ecou].cost=c;
    E[Ecou].next=head[u];
    head[u]=Ecou++;
}

int ans[MaxN];

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    
    int N,M;
    int a,b,c;

    scanf("%d %d",&N,&M);

    init(N);

    while(M--)
    {
        scanf("%d %d %d",&a,&b,&c);
        addEdge(a,b,c);
    }

    Dijkstra(ans,N,1);

    printf("%d\n",ans[N]);

    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/whywhy/p/4338505.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值