pOJ 2115

博客包含编程题的描述、输入、输出、示例输入、示例输出和来源等信息,转载自特定博客链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C Looooops
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 35461 Accepted: 10372

Description

A Compiler Mystery: We are given a C-language style for loop of type 
for (variable = A; variable != B; variable += C)

statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k

Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2 k) are the parameters of the loop. 

The input is finished by a line containing four zeros. 

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

Source

来源:http://poj.org/problem?id=2115
程序与解析:
//poj2115
//一句话题意,问循环多少次后停止,如果循环此处超过2^k,则%2^k;
//假设循环x次(A+Cx)%2^k=B,得Cx+2^ky=B-A 
//(A+Cx)%2^k=B,即B= (A+Cx)-(A+Cx)/ 2^k*2^k
//令 (A+Cx)/ 2^k=y,则有 B= (A+Cx)-2^k*y,得B-A=Cx-2^k*y 
//令y=-y,则有 Cx+2^ky=B-A 
#include<iostream>
#include<cstdio>
using namespace std;
long long  A,B,C,k;
long long a,b,c,g,x,y;
void exgcd(long long a,long long b){
    if(b==0){//ax+0y=a,可以约定y=0,x只能为1 
        g=a;//全局变量 
        x=1;//全局变量
        y=0;//全局变量
        return ;
    }
    exgcd(b,a%b);
    long long  z=x;
    x=y;
    y=z-a/b*y;     
}
int main(){
    while (1){
        scanf("%d%d%d%d",&A,&B,&C,&k);
        if (A==0&&B==0&&C==0&&k==0) return 0;
        long long te=1;
        a=C;
        b=te<<k;//注意1<<31位是负数,因为默认1是int,最高位是符号位,此时可以long long(1)<<31,将1的存储空间强制转换为长整型。 
        c=B-A;
        exgcd(a,b);
        if(c%g!=0)printf("FOREVER\n");
        else{
            x=x*c/g;//ax+by=c 与 ax+by=gcd(a,b)的关系 
            long long t=b/g;//符合ax+by的解x的公差是b/g. 
            //cout<<g<<" "<<t<<endl;
            x=(x%t+t)%t;//保证解x是正数。 
            printf("%lld\n",x);//注意输出的是长整型 
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/ssfzmfy/p/11186764.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值