Generalized Linear Models

本文深入探讨了指数家族分布的概念及其应用,通过贝叶斯和高斯分布的例子,阐述了自然参数、充分统计量和log分割函数的作用。解释了如何通过变换参数来理解不同分布之间的联系。

1. Guide

  So far, we’ve seen a regression example, and a classification example. In the regression example, we had y|x; θ ∼ N(μ, σ2), and in the classification one, y|x; θ ∼ Bernoulli(φ), where for some appropriate definitions of μ and φ as functions of x and θ.(μ=θTx,  φ=g(θTx))

 

2. The exponential family

  We say that a class of distributions is in the exponential family if it can be written in the form:

    p(y; η) = b(y) exp(ηTT(y) − a(η))

  Here, η is called the natural parameter (also called the canonical parameter) of the distribution; T(y) is the sufficient statistic (for the distributions we consider, it will often be the case that T(y) = y); and a(η) is the logpartition function. The quantity e−a(η) essentially plays the role of a normalization constant, that makes sure the distribution p(y; η) sums/integrates over y to 1.

  A fixed choice of T, a and b defines a family (or set) of distributions that is parameterized by η; as we vary η, we then get different distributions within this family.

 

3. Examples

  a. Bernoulli distribution:(we consider η as a  real num)

    

    Thus, the natural parameter is given by η = log(φ/(1 − φ)). Interestingly, if we invert this definition for η by solving for φ in terms of η, we obtain φ = 1/(1 + e−η). This is the familiar sigmoid function! This will come up again when we derive logistic regression as a GLM:

      η = log(φ/(1 − φ))

      T(y) = y

      a(η) = −log(1 − φ)= log(1 + eη)

      b(y) = 1

  b. Gaussian distribute:(let's set σ2=1)

    

    Thus, we see that the Gaussian is in the exponential family:

      η = μ

      T(y) = y

      a(η) = μ2/2 = η2/2

      b(y) = (1/√2π) exp(−y2/2).

 

转载于:https://www.cnblogs.com/ustccjw/archive/2013/04/14/3019896.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值