[LeetCode] 684. Redundant Connection 冗余的连接

本文介绍了一种解决LeetCode上683.冗余连接问题的方法,该问题要求从给定的无向图中删除形成环的最后一边,使其成为一棵树。文章提供了使用并查集(UnionFind)的Java、Python和C++实现代码,这是一种常见的图论问题解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3

 

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directedgraph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

给一个无向图,删掉组成环的最后一条边。跟之前的261. Graph Valid Tree 类似,三种解法都基本相同。

解法:Union Find

Java:

class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        int[] parent = new int[2001];
        for (int i = 0; i < parent.length; i++) parent[i] = i;
        
        for (int[] edge: edges){
            int f = edge[0], t = edge[1];
            if (find(parent, f) == find(parent, t)) return edge;
            else parent[find(parent, f)] = find(parent, t);
        }
        
        return new int[2];
    }
    
    private int find(int[] parent, int f) {
        if (f != parent[f]) {
          parent[f] = find(parent, parent[f]);  
        }
        return parent[f];
    }
} 

Python:

class UnionFind(object):
    def __init__(self, n):
        self.set = range(n)
        self.count = n

    def find_set(self, x):
        if self.set[x] != x:
            self.set[x] = self.find_set(self.set[x])  # path compression.
        return self.set[x]

    def union_set(self, x, y):
        x_root, y_root = map(self.find_set, (x, y))
        if x_root == y_root:
            return False
        self.set[min(x_root, y_root)] = max(x_root, y_root)
        self.count -= 1
        return True


class Solution(object):
    def findRedundantConnection(self, edges):
        """
        :type edges: List[List[int]]
        :rtype: List[int]
        """
        union_find = UnionFind(len(edges)+1)
        for edge in edges:
            if not union_find.union_set(*edge):
                return edge
        return []  

C++:

class Solution {
public:
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        unordered_map<int, unordered_set<int>> m;
        for (auto edge : edges) {
            if (hasCycle(edge[0], edge[1], m, -1)) return edge;
            m[edge[0]].insert(edge[1]);
            m[edge[1]].insert(edge[0]);
        }
        return {};
    }
    bool hasCycle(int cur, int target, unordered_map<int, unordered_set<int>>& m, int pre) {
        if (m[cur].count(target)) return true;
        for (int num : m[cur]) {
            if (num == pre) continue;
            if (hasCycle(num, target, m, cur)) return true;
        }
        return false;
    }
};

C++:

class Solution {
public:
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        unordered_map<int, unordered_set<int>> m;
        for (auto edge : edges) {
            queue<int> q{{edge[0]}};
            unordered_set<int> s{{edge[0]}};
            while (!q.empty()) {
                auto t = q.front(); q.pop();
                if (m[t].count(edge[1])) return edge;
                for (int num : m[t]) {
                    if (s.count(num)) continue;
                    q.push(num);
                    s.insert(num);
                }
            }
            m[edge[0]].insert(edge[1]);
            m[edge[1]].insert(edge[0]);
        }
        return {};
    }
};

C++:  

class Solution {
public:
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        unordered_map<int, unordered_set<int>> m;
        for (auto edge : edges) {
            queue<int> q{{edge[0]}};
            unordered_set<int> s{{edge[0]}};
            while (!q.empty()) {
                auto t = q.front(); q.pop();
                if (m[t].count(edge[1])) return edge;
                for (int num : m[t]) {
                    if (s.count(num)) continue;
                    q.push(num);
                    s.insert(num);
                }
            }
            m[edge[0]].insert(edge[1]);
            m[edge[1]].insert(edge[0]);
        }
        return {};
    }
};

  

  

 

 

类似题目:

[LeetCode] 261. Graph Valid Tree 图是否是树

[LeetCode] 685. Redundant Connection II 冗余的连接 II

 

All LeetCode Questions List 题目汇总

转载于:https://www.cnblogs.com/lightwindy/p/9750317.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值