sklearn中预测模型的score函数

本文介绍了sklearn库中LinearRegression模型的score函数,该函数计算预测的R^2得分,即(1 - u/v),其中u是残差平方和,v是总平方和。R^2最佳分数为1.0,可以为负,0.0表示模型预测仅等于y的期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn.linear_model.LinearRegression.score

score(self, X, y, sample_weight=None)

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

 

作用:返回该次预测的系数R2    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值