Covered Points Count(思维题)

本文介绍了一个经典的区间覆盖问题,通过将每个区间分解为左端点和右端点,并对这些点进行排序,来计算每段区间覆盖的整数点数量。文章提供了完整的C++代码实现,展示了如何有效地解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Covered Points Count
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given nn segments on a coordinate line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

Your task is the following: for every k[1..n]k∈[1..n], calculate the number of points with integer coordinates such that the number of segments that cover these points equals kk. A segment with endpoints lili and riri covers point xx if and only if lixrili≤x≤ri.

Input

The first line of the input contains one integer nn (1n21051≤n≤2⋅105) — the number of segments.

The next nn lines contain segments. The ii-th line contains a pair of integers li,rili,ri (0liri10180≤li≤ri≤1018) — the endpoints of the ii-th segment.

Output

Print nn space separated integers cnt1,cnt2,,cntncnt1,cnt2,…,cntn, where cnticnti is equal to the number of points such that the number of segments that cover these points equals to ii.

Examples
input
Copy
3
0 3
1 3
3 8
output
Copy
6 2 1 
input
Copy
3
1 3
2 4
5 7
output
Copy
5 2 0 
Note

The picture describing the first example:

Points with coordinates [0,4,5,6,7,8][0,4,5,6,7,8] are covered by one segment, points [1,2][1,2] are covered by two segments and point [3][3] is covered by three segments.

The picture describing the second example:

Points [1,4,5,6,7][1,4,5,6,7] are covered by one segment, points [2,3][2,3] are covered by two segments and there are no points covered by three segments.

 

 这题坑点比较多,没有开LLwa一发 ,数组开小了又wa一发 难受 

 细节方面很多都没有注意到

 

 这题是纯思维题 把每一个区间分为两个点一个左端点一个右端点 

  进行排序一下,就出来了 

  从左往右扫一遍经历一次左端点就加一,经历一次又端点就减一 

  这个规律看图一下就出来了

  

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 4e5 + 10;
 4 typedef long long LL;
 5 struct node {
 6     LL x, y;
 7     node (LL x, LL y) : x(x), y(y) {}
 8     node () {}
 9 } qu[maxn];
10 int cmp(node a, node b) {
11     if (a.x == b.x) return a.y > b.y;
12     return a.x < b.x;
13 }
14 LL ans[maxn];
15 int main() {
16     LL n,k=0,a,b;
17     scanf("%lld", &n);
18     for (int i = 0 ; i < n ; i++) {
19         scanf("%lld%lld",&a,&b);
20         qu[k++] = node(a, 1);
21         qu[k++] = node(b + 1, -1);
22     }
23     sort(qu, qu + k, cmp);
24     LL temp = 0;
25     for(int i = 0 ; i < k-1  ; i++ ) {
26         temp += qu[i].y;
27         if (qu[i].x != qu[i + 1].x) ans[temp]+= qu[i + 1].x - qu[i].x;
28     }
29     for (int i = 1 ; i <=n ; i++)
30         printf("%lld ", ans[i]);
31     printf("\n");
32     return 0;
33 }
View Code

 

转载于:https://www.cnblogs.com/qldabiaoge/p/9267936.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值