数据库使用的是MySQL,JDK版本1.8,运行在SpringBoot环境下
本文章源代码:https://github.com/runbeyondmove/mybatis-batch-demo
对比3种可用的方式
1、反复执行单条插入语句
2、xml拼接sql
3、批处理执行
先说结论:少量插入请使用反复插入单条数据,方便。数量较多请使用批处理方式。(可以考虑以有需求的插入数据量20条左右为界吧,在我的测试和数据库环境下耗时都是百毫秒级的,方便最重要)。无论何时都不用xml拼接sql的方式。
1. xml映射文件中的代码
<insert id="insert" parameterType="top.spanrun.bootssm.model.UserInf" useGeneratedKeys="true" keyProperty="id">
<!--
@mbggenerated generator自动生成,注意order的before和after
-->
<!--<selectKey keyProperty="id" order="AFTER" resultType="java.lang.Integer">
SELECT LAST_INSERT_ID()
</selectKey>-->
insert into user_inf (id, uname, passwd, gentle, email, city)
values (#{id,jdbcType=INTEGER}, #{uname,jdbcType=VARCHAR}, #{passwd,jdbcType=VARCHAR},
#{gentle,jdbcType=VARCHAR}, #{email,jdbcType=VARCHAR}, #{city,jdbcType=VARCHAR}
)
</insert>
<insert id="insertWithXML" parameterType="java.util.List" useGeneratedKeys="true" keyProperty="id">
insert into user_inf (id, uname, passwd, gentle, email, city)
values
<foreach collection="list" item="user" index="index" separator=",">
(#{user.id,jdbcType=INTEGER}, #{user.uname,jdbcType=VARCHAR}, #{user.passwd,jdbcType=VARCHAR},
#{user.gentle,jdbcType=VARCHAR}, #{user.email,jdbcType=VARCHAR}, #{user.city,jdbcType=VARCHAR})
</foreach>
</insert>
2. Mapper接口
@Mapper
public interface UserInfMapper {
int insert(UserInf record);
int insertWithXML(@Param("list") List<UserInf> list);
}
3. Service实现,接口声明省略
@Service
public class UserInfServiceImpl implements UserInfService{
private static final Logger LOGGER = LoggerFactory.getLogger(UserInfServiceImpl.class);
@Autowired
SqlSessionFactory sqlSessionFactory;
@Autowired
UserInfMapper userInfMapper;
@Transactional
@Override
public boolean testInsertWithBatch(List<UserInf> list) {
LOGGER.info(">>>>>>>>>>>testInsertWithBatch start<<<<<<<<<<<<<<");
SqlSession sqlSession = sqlSessionFactory.openSession(ExecutorType.BATCH,false);
UserInfMapper mapper = sqlSession.getMapper(UserInfMapper.class);
long startTime = System.nanoTime();
try {
List<UserInf> userInfs = Lists.newArrayList();
for (int i = 0; i < list.size(); i++) {
// 每1000条提交一次
if ((i+1)%1000 == 0){
sqlSession.commit();
sqlSession.clearCache();
}
mapper.insert(list.get(i));
}
} catch (Exception e) {
e.printStackTrace();
} finally {
sqlSession.close();
}
LOGGER.info("testInsertWithBatch spend time:{}",System.nanoTime()-startTime);
LOGGER.info(">>>>>>>>>>>testInsertWithBatch end<<<<<<<<<<<<<<");
return true;
}
@Transactional
@Override
public boolean testInsertWithXml(List<UserInf> list) {
LOGGER.info(">>>>>>>>>>>testInsertWithXml start<<<<<<<<<<<<<<");
long startTime = System.nanoTime();
userInfMapper.insertWithXML(list);
LOGGER.info("testInsertWithXml spend time:{}",System.nanoTime()-startTime);
LOGGER.info(">>>>>>>>>>>testInsertWithXml end<<<<<<<<<<<<<<");
return true;
}
@Transactional
@Override
public boolean testInsertWithForeach(List<UserInf> list) {
LOGGER.info(">>>>>>>>>>>testInsertWithForeach start<<<<<<<<<<<<<<");
long startTime = System.nanoTime();
for (int i = 0; i < list.size(); i++) {
userInfMapper.insert(list.get(i));
}
LOGGER.info("testInsertWithForeach spend time:{}",System.nanoTime()-startTime);
LOGGER.info(">>>>>>>>>>>testInsertWithForeach end<<<<<<<<<<<<<<");
return true;
}
@Transactional
@Override
public boolean testInsert(UserInf userInf) {
LOGGER.info(">>>>>>>>>>>testInsert start<<<<<<<<<<<<<<");
long startTime = System.nanoTime();
LOGGER.info("insert before,id=" + userInf.getId());
userInfMapper.insert(userInf);
LOGGER.info("insert after,id=" + userInf.getId());
LOGGER.info("testInsert spend time:{}",System.nanoTime()-startTime);
LOGGER.info(">>>>>>>>>>>testInsert end<<<<<<<<<<<<<<");
return true;
}
}
4. Controller控制器
@RestController
public class UserInfController {
@Autowired
UserInfService userInfService;
@RequestMapping(value = "test/{size}/{type}")
public void testInsert(@PathVariable(value = "size") Integer size,@PathVariable(value = "type") Integer type){
System.out.println(">>>>>>>>>>>>type = " + type + "<<<<<<<<<<<<<");
switch (type){
case 1:
userInfService.testInsertWithForeach(generateList(size));
break;
case 2:
userInfService.testInsertWithXml(generateList(size));
break;
case 3:
userInfService.testInsertWithBatch(generateList(size));
break;
default:
UserInf userInf = new UserInf();
userInf.setUname("user_single");
userInf.setGentle("1");
userInf.setEmail("123@123.com");
userInf.setCity("广州市");
userInf.setPasswd("123456");
userInfService.testInsert(userInf);
}
}
private List<UserInf> generateList(int listSize){
List<UserInf> list = Lists.newArrayList();
UserInf userInf = null;
for (int i = 0; i < listSize; i++) {
userInf = new UserInf();
userInf.setUname("user_" + i);
userInf.setGentle("1");
userInf.setEmail("123@123.com");
userInf.setCity("广州市");
userInf.setPasswd("123456");
list.add(userInf);
}
return list;
}
}
测试结果(单位是纳秒):
1000
testInsertWithForeach spend time:431526521
testInsertWithXml spend time:118772867
testInsertWithBatch spend time:175602346
10000
testInsertWithForeach spend time:2072525050
testInsertWithXml spend time:685605121
testInsertWithBatch spend time:894647254
100000
testInsertWithForeach spend time:18950160161
testInsertWithBatch spend time:8469312537
testInsertWithXml报错
### Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (9388970 > 4194304). You can change this value on the server by setting the max_allowed_packet' variable.
; Packet for query is too large (9388970 > 4194304). You can change this value on the server by setting the max_allowed_packet' variable.; nested exception is com.mysql.jdbc.PacketTooBigException: Packet for query is too large
(9388970 > 4194304). You can change this value on the server by setting the max_allowed_packet' variable.] with root cause
com.mysql.jdbc.PacketTooBigException: Packet for query is too large (9388970 > 4194304). You can change this value on the server by setting the max_allowed_packet' variable.
查看xml sql拼接的异常信息,可以发现,最大只能达到4194304,也就是4M,所以这种方式不推荐
结论
循环插入单条数据虽然效率极低,但是代码量极少,如果在使用tk.Mapper的插件情况下,仅需代码,:
@Transactional
public void add1(List<Item> itemList) {
itemList.forEach(itemMapper::insertSelective);
}
因此,在需求插入数据数量不多的情况下肯定用它了。
xml拼接sql是最不推荐的方式,使用时有大段的xml和sql语句要写,很容易出错,工作效率很低。更关键点是,虽然效率尚可,但是真正需要效率的时候你挂了,要你何用?
批处理执行是有大数据量插入时推荐的做法,使用起来也比较方便。
其他在使用中的补充:
1. 使用mybatis generator生成器生成中的一些坑
代码说明:数据库是MySQL,且主键自增,用generator 生成的mapper.xml中的代码,自增ID,使用的是selectKey来获取。
问题描述:insert的时候,添加的时候,第一条数据添加成功,接着添加第二条数据的时候会提示失败,失败的原因是ID还是使用的上一个ID值,主键重复导致插入失败。异常如下:
Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException: Duplicate entry '4' for key 'PRIMARY'
问题原因:BEFORE还是AFTER的问题
<selectKey keyProperty="id" order="BEFORE" resultType="java.lang.Integer">
SELECT LAST_INSERT_ID()
</selectKey>
需要注意的是,Oracle使用before,MySQL使用after
其实在使用Mybatis generator生成带代码的时候可以通过identity="true"来指定生成的selectKey是before还是after
<generatedKey column="id" sqlStatement="Mysql" identity="true" />
注:在select标签中使用useGeneratedKeys="true" keyProperty="id" 不存在该问题。
2. mybatis的版本
升级Mybatis版本到3.3.1
3. 在批量插入的拼接xml sql时注意foreach是没有使用open和close的,但是在批量查询修改删除时才使用到open和close
<foreach collection="list" item="user" index="index" separator=",">
(#{user.id,jdbcType=INTEGER}, #{user.uname,jdbcType=VARCHAR}, #{user.passwd,jdbcType=VARCHAR},
#{user.gentle,jdbcType=VARCHAR}, #{user.email,jdbcType=VARCHAR}, #{user.city,jdbcType=VARCHAR})
</foreach>
4. 使用批量提交注意的事项
a. 事务
由于在 Spring 集成的情况下,事务连接由 Spring 管理(SpringManagedTransaction
),所以这里不需要手动关闭 sqlSession
,在这里手动提交(commit
)或者回滚(rollback
)也是无效的。
b. 批量提交
批量提交只能应用于 insert, update, delete。
并且在批量提交使用时,如果在操作同一SQL时中间插入了其他数据库操作,就会让批量提交方式变成普通的执行方式,所以在使用批量提交时,要控制好 SQL 执行顺序