anacoda报错No module named 'sklearn.cross_validation'

本文介绍在最新的snacoda环境中,sklearn的cross_validation模块已被移除,取而代之的是model_selection模块中的train_test_split函数。这反映了机器学习库的不断进化,提醒开发者们在进行模型评估时注意这一变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在目前的snacoda里集成的sklearn已经不存在cross_validation模块了

使用以下模块

 

from  sklearn.model_selection  import train_test_split

转载于:https://www.cnblogs.com/students/p/10746625.html

代码:import spacy # #词元化处理 # nlp = spacy.load(&#39;en_core_web_sm&#39;) # doc=nlp(u&#39;this product inrtegrates both libraries for downloading and appling patches&#39;) # for token in doc: # print(token.text,token.lemma_) from spacy.symbols import ORTH,LEMMA nlp=spacy.load(&#39;en_core_web_sm&#39;) doc=nlp(u&#39;I am flying to Frisco&#39;) print([w.text for w in doc]) special_case=[{ORTH:u&#39;Frisco&#39;,LEMMA:u&#39;San Francisco&#39;}] nlp.tokenizer.add_special_case(u&#39;Frisco&#39;, special_case) print([w.lemma_ for w in nlp(u&#39;I am flying to Frisco&#39;)]) 报错:D:\anacoda\envs\NLPtest\python.exe D:\pycharm\NLPtest\test2.py D:\pycharm\PyCharm 2024.2.1\plugins\python-ce\helpers\pycharm_display\datalore\display\supported_data_type.py:6: UserWarning: The NumPy module was reloaded (imported a second time). This can in some cases result in small but subtle issues and is discouraged. import numpy [&#39;I&#39;, &#39;am&#39;, &#39;flying&#39;, &#39;to&#39;, &#39;Frisco&#39;] Traceback (most recent call last): File "D:\pycharm\NLPtest\test2.py", line 12, in <module> nlp.tokenizer.add_special_case(u&#39;Frisco&#39;, special_case) File "spacy\tokenizer.pyx", line 610, in spacy.tokenizer.Tokenizer.add_special_case File "spacy\tokenizer.pyx", line 598, in spacy.tokenizer.Tokenizer._validate_special_case ValueError: [E1005] Unable to set attribute &#39;LEMMA&#39; in tokenizer exception for &#39;Frisco&#39;. Tokenizer exceptions are only allowed to specify ORTH and NORM. 进程已结束,退出代码为 1
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值