求多个数的最小公倍数的问题

本文介绍了如何通过辗转相除法求多个数的最小公倍数,并解释了最小公倍数与最大公约数的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
求n个数的最小公倍数。
 
Input
输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数。
 
Output
为每组测试数据输出它们的最小公倍数,每个测试实例的输出占一行。你可以假设最后的输出是一个32位的整数。
 
Sample Input
2 4 6 3 2 5 7
 
Sample Output
12 70
 
#include <stdio.h>
#include <stdlib.h>
typedef long unsigned lu;
lu gcd(lu a,lu b)
{
    int c;
    c=a%b;
    while(c)
    {
        a=b;
        b=c;
        c=a%b;
    }
    return b;
}
lu lcm(lu a,lu b)
{
    return a*b/gcd(a,b);
}
int main()
{
    lu t,n;
    while(scanf("%lu",&t)!=EOF)
    { lu re=1;
        while(t--)
        {
            scanf("%lu",&n);
             re=lcm(re,n);
        }
        printf("%lu\n",re);
    }
    return 0;
}

 

*最小公倍数与最大公约数的关系:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。

例如:对于4,6,8,10,有[4,6,8,10]=120,而M=4*6*8*10=1920,M/(M/a1,M/a2,..,M/an) =1920/(6*8*10,4*8*10,4*6*10,4*6*8)=1920/16=120。

*多个数最大公约数的算法实现

    求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即

(1)       用辗转相除法[2]计算a1和a2的最大公约数(a1,a2)

(2)       用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3)

(3)       用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4)

(4)       依此重复,直到求得(a1,a2,..,an)

上述方法需要n-1次辗转相除运算。

做此题的关键所在是找出最小公倍数与最大公约数之间的关系,即是abc的最小公倍数=a*b*c/gcd(a,b,c);所以此题又转化为求多个数的最大公约数的问题,利用辗转相除最后求得结果。

转载于:https://www.cnblogs.com/nynu-ycg6/p/4662017.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值