opencv在android,OpenCV 在 Android 中的应用

使用 Android NDK 编译 so 库

简介

在 linuxt 系统下使用 OpenCV2.3 + NDK R6 编译 OpenCV 人脸检测应用

准备

注: http://code.google.com/p/android-opencv/ 网站上说要使用 crystax ndk r4代替 NDK 。估计可能是对于较旧的 Android版本需要这样。如果 NDK 无法编译,请尝试使用 crystax ndk r4 编译。

OpenCV 设置

从网站上下载 OpenCV 2.3.0 for Android后,解压到某个目录,如 ~/ 目录下

设置 OPENCV_PACKAGE_DIR 环境变量

$ export OPENCV_PACKAGE_DIR=~/enCV-2.3.0/

新建一个 Android 工程

在 eclipse 中新建一个 android 工程如 study.opencv ,并且在工程根目录下新建一个名为 jni 的目录。将下载的 android-ndk-r6 解压到某个目录下,如 ~/

从 ~/android-ndk-r6/sample 下某个 sample 中拷贝 Android.mk, Application.mk 到 study.opencv/jni 目录

设置编译脚本

在 Android.mk 中, include $(CLEAR_VARS) 后面,加入下行

include $(OPENCV_PACKAGE_DIR)/$(TARGET_ARCH_ABI)/share/opencv/OpenCV.mk

如果应用支持 ARM NEON 那么还需要加入以下行

include $(OPENCV_PACKAGE_DIR)/armeabi-v7a-neon/share/opencv/OpenCV.mk

LOCAL_ARM_NEON := true

在 Application.mk 中加入以下行

APP_STL := gnustl_static

APP_CPPFLAGS := -frtti -fexceptions

注:关于 Android.mk 与 Application.mk 的详细说明,请参考 ndk/docs 下 Android-mk.html 和 Application-mk.html 。

Java 层定义 native 接口

新建 study.opencv.FaceRec 类,定义一个人脸检测的本地接口

/**

* detect front face from image.

*

* @paramxml

*            opencv haarcascade xml file path

* @paraminfile

*            input image file path

* @paramoutfile

*            output image file path

*/

public native voiddetect(String xml, String infile, String outfile);

生成 jni 头文件

使用 javah 命令生成 jni 头文件

$ cd ~/workspace/study.opencv/bin

$ javah study.opencv.FaceRec

会在 bin 目录生成一个 study_opencv_FaceRec.h 文件。将此文件拷贝到 ../jni 目录中

注:如果接口有变更,请先手动删除生成的 .h 文件。以防止一些意外的错误。

在 c 层实现图像人脸检测

在 jni 目录中使用文本编辑器新建一个 facedetect.cpp ,实现图像人脸检测

#include "cv.h"

#include "highgui.h"

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#define LOG_TAG "opencv_face_detect"

#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)

#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)

static CvMemStorage* storage = 0;

static CvHaarClassifierCascade* cascade = 0;

void detect_and_draw( IplImage* image );

const char* cascade_name =

"haarcascade_frontalface_alt.xml";

/* "haarcascade_profileface.xml";*/

/*int captureFromImage(char* xml, char* filename);*/

char* jstring2String(JNIEnv*, jstring);

int captureFromImage(char* xml, char* filename, char* outfile)

{

LOGI("begin: ");

// we just detect image

// CvCapture* capture = 0;

IplImage *frame, *frame_copy = 0;

const char* input_name = "lina.png";

if(xml != NULL)

{

cascade_name = xml;

}

if(filename != NULL)

{

input_name = filename;

}

LOGI("xml=%s,filename=%s", cascade_name, input_name);

// load xml

cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );

LOGI("load cascade ok ? %d", cascade != NULL ? 1 : 0);

if( !cascade )

{

LOGI("ERROR: Could not load classifier cascade\n" );

// I just won't write long full file path, to instead of relative path, but I failed.

FILE * fp = fopen(input_name,"w");

if(fp == NULL){

LOGE("create failed");

}

return -1;

}

storage = cvCreateMemStorage(0);

// cvNamedWindow( "result", 1 );

IplImage* image = cvLoadImage( input_name, 1 );

if( image )

{

LOGI("load image successfully");

detect_and_draw( image );

// cvWaitKey(0);

if(outfile != NULL)

{

LOGI("after detected save image file");

cvSaveImage(outfile, image);//把图像写入文件

}

cvReleaseImage( &image );

}

else

{

LOGE("can't load image from : %s ", input_name);

}

}

void detect_and_draw( IplImage* img )

{

static CvScalar colors[] =

{

{{0,0,255}},

{{0,128,255}},

{{0,255,255}},

{{0,255,0}},

{{255,128,0}},

{{255,255,0}},

{{255,0,0}},

{{255,0,255}}

};

double scale = 1.3;

IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );

IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),

cvRound (img->height/scale)),

8, 1 );

int i;

cvCvtColor( img, gray, CV_BGR2GRAY );

cvResize( gray, small_img, CV_INTER_LINEAR );

cvEqualizeHist( small_img, small_img );

cvClearMemStorage( storage );

if( cascade )

{

double t = (double)cvGetTickCount();

CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,

1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,

cvSize(30, 30) );

t = (double)cvGetTickCount() - t;

LOGI( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );

for( i = 0; i < (faces ? faces->total : 0); i++ )

{

CvRect* r = (CvRect*)cvGetSeqElem( faces, i );

CvPoint center;

int radius;

center.x = cvRound((r->x + r->width*0.5)*scale);

center.y = cvRound((r->y + r->height*0.5)*scale);

radius = cvRound((r->width + r->height)*0.25*scale);

cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );

}

}

// cvShowImage( "result", img );

cvReleaseImage( &gray );

cvReleaseImage( &small_img );

}

JNIEXPORT void JNICALL Java_study_opencv_FaceRec_detect

(JNIEnv * env, jobject obj, jstring xml, jstring filename, jstring outfile)

{

LOGI("top method invoked! ");/*LOGI("1");

char * c_xml = (char *)env->GetStringUTFChars(xml, JNI_FALSE);

LOGI("char * = %s", c_xml);

if(c_xml == NULL)

{

LOGI("error in get char*");

return;

}

char * c_file = env->GetStringCritical(env, filename, 0);

if(c_xml == NULL)

{

LOGI("error in get char*");

return;

}

captureFromImage(c_xml, c_file);

env->ReleaseStringCritical(env, xml, c_xml);

env->ReleaseStringCritical(env, file_name, c_file);

*/

captureFromImage(jstring2String(env,xml), jstring2String(env,filename), jstring2String(env,outfile));

}

//jstring to char*

char* jstring2String(JNIEnv* env, jstring jstr)

{

if(jstr == NULL)

{

LOGI("NullPointerException!");

return NULL;

}

char* rtn = NULL;

jclass clsstring = env->FindClass("java/lang/String");

jstring strencode = env->NewStringUTF("utf-8");

jmethodID mid = env->GetMethodID(clsstring, "getBytes", "(Ljava/lang/String;)[B");

jbyteArray barr= (jbyteArray)env->CallObjectMethod(jstr, mid, strencode);

jsize alen = env->GetArrayLength(barr);

jbyte* ba = env->GetByteArrayElements(barr, JNI_FALSE);

if (alen > 0)

{

rtn = (char*)malloc(alen + 1);

memcpy(rtn, ba, alen);

rtn[alen] = 0;

}

env->ReleaseByteArrayElements(barr, ba, 0);

LOGI("char*=%s",rtn);

return rtn;

}

Android.mk:

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

include $(OPENCV_PACKAGE_DIR)/$(TARGET_ARCH_ABI)/share/opencv/OpenCV.mk

LOCAL_MODULE    := facedetect

LOCAL_CFLAGS    := -Werror

LOCAL_SRC_FILES := \

facedetect.cpp \

LOCAL_LDLIBS    := -llog

include $(BUILD_SHARED_LIBRARY)

Application.mk:

APP_ABI := armeabi armeabi-v7a

APP_PLATFORM := android-10

APP_STL := gnustl_static

APP_CPPFLAGS := -frtti -fexceptions

使用 NDK 进行编译

在工程 jni 目 录 下 执 行 ndk-build

$ cd ~/workspace/study.opencv/jni

$ ~/android-ndk-r6/ndk-build.

如果 编译 成功, 则 会在工程下面生成 libs/armeabi/facedetect.so 库 了 .

如有 编译 失 败 , 请 根据提示修改 错误

调用 JNI 接口

将 opencv 人 脸检测 要用到的 xml 文件 ( 位于 OpenCV-2.3.0/armeabi/share/opencv/haarcascades/ 目录下 ) 及 图 像文件使用DDMS push 到 data/data/study.opencv/files 目 录 中。

在 activity 中新建一个 线 程, 调 用 FaceRec#detect 方法。

@Override

public voidonCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout. main);

finalFaceRec face = newFaceRec();

newThread() {

@Override

public voidrun() {

face.detect(

"/data/data/study.opencv/files/haarcascade_frontalface_alt2.xml" ,

"/data/data/study.opencv/files/wqw1.jpg" ,

"/data/data/study.opencv/files/wqw1_detected.jpg" );

}

}.start();

}

运行结果

经测试,对png,jpg,bmp图片正确识别人脸,不过速度太慢了。

参考

人 脸检测   http://www.opencv.org.cn/index.php/%E4%BA%BA%E8%84%B8%E6%A3%80%E6%B5%8B

在飞思卡尔i.MX 6Quad四核 平台上测试,1.7秒

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值