CodeForces C. Maximal Intersection

本文解析了Codeforces竞赛中一道关于线段交集长度最大化的题目,通过构造辅助数组和遍历策略,实现了高效求解算法。示例输入输出展示了算法的有效性。

http://codeforces.com/contest/1029/problem/C

 

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n1)(n−1)segments has the maximal possible length.

Input

The first line contains a single integer nn (2n31052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0liri1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input
Copy
4
1 3
2 6
0 4
3 3
output
Copy
1
input
Copy
5
2 6
1 3
0 4
1 20
0 4
output
Copy
2
input
Copy
3
4 5
1 2
9 20
output
Copy
0
input
Copy
2
3 10
1 5
output
Copy
7

代码:

#include <bits/stdc++.h>
using namespace std;

#define inf 0x3f3f3f3f
const int maxn = 300010 + 10;
int N;

struct Node {
    int l;
    int r;
}S[maxn], Q[maxn], A[maxn];

int main() {
    scanf("%d", &N);
    S[0].r = inf, S[0].l = -inf;
    for(int i = 1; i <= N; i ++) {
        scanf("%d%d", &A[i].l, &A[i].r);
        S[i].l = max(S[i - 1].l, A[i].l);
        S[i].r = min(S[i - 1].r, A[i].r);
    }

    Q[N + 1].r = inf, Q[N + 1].l = -inf;
    for(int i = N; i >= 1; i --) {
        Q[i].l = max(A[i].l, Q[i + 1].l);
        Q[i].r = min(A[i].r, Q[i + 1].r);
    }

    int ans = 0;
    for(int i = 1; i <= N; i ++) {
        ans = max(ans, (min(Q[i + 1].r, S[i - 1].r) - max(Q[i + 1].l, S[i - 1].l)));
    }
    printf("%d\n", ans);
    return 0;
}

  

转载于:https://www.cnblogs.com/zlrrrr/p/9822794.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值